MakeItFrom.com
Menu (ESC)

C19200 Copper vs. CC334G Bronze

Both C19200 copper and CC334G bronze are copper alloys. They have 79% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C19200 copper and the bottom bar is CC334G bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
120
Elongation at Break, % 2.0 to 35
5.6
Poisson's Ratio 0.34
0.33
Shear Modulus, GPa 44
45
Tensile Strength: Ultimate (UTS), MPa 280 to 530
810
Tensile Strength: Yield (Proof), MPa 98 to 510
410

Thermal Properties

Latent Heat of Fusion, J/g 210
240
Maximum Temperature: Mechanical, °C 200
240
Melting Completion (Liquidus), °C 1080
1080
Melting Onset (Solidus), °C 1080
1020
Specific Heat Capacity, J/kg-K 390
450
Thermal Conductivity, W/m-K 240
41
Thermal Expansion, µm/m-K 17
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 58 to 74
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 58 to 75
8.0

Otherwise Unclassified Properties

Base Metal Price, % relative 30
29
Density, g/cm3 8.9
8.2
Embodied Carbon, kg CO2/kg material 2.6
3.6
Embodied Energy, MJ/kg 41
59
Embodied Water, L/kg 310
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 10 to 98
38
Resilience: Unit (Modulus of Resilience), kJ/m3 42 to 1120
710
Stiffness to Weight: Axial, points 7.2
8.1
Stiffness to Weight: Bending, points 18
20
Strength to Weight: Axial, points 8.8 to 17
28
Strength to Weight: Bending, points 11 to 16
24
Thermal Diffusivity, mm2/s 69
11
Thermal Shock Resistance, points 10 to 19
28

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
10 to 12
Copper (Cu), % 98.5 to 99.19
72 to 84.5
Iron (Fe), % 0.8 to 1.2
3.0 to 7.0
Lead (Pb), % 0 to 0.030
0 to 0.050
Magnesium (Mg), % 0
0 to 0.050
Manganese (Mn), % 0
0 to 2.5
Nickel (Ni), % 0
4.0 to 7.5
Phosphorus (P), % 0.010 to 0.040
0
Silicon (Si), % 0
0 to 0.1
Tin (Sn), % 0
0 to 0.2
Zinc (Zn), % 0 to 0.2
0 to 0.5
Residuals, % 0 to 0.2
0