MakeItFrom.com
Menu (ESC)

C19200 Copper vs. S20161 Stainless Steel

C19200 copper belongs to the copper alloys classification, while S20161 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C19200 copper and the bottom bar is S20161 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 2.0 to 35
46
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 44
76
Shear Strength, MPa 190 to 300
690
Tensile Strength: Ultimate (UTS), MPa 280 to 530
980
Tensile Strength: Yield (Proof), MPa 98 to 510
390

Thermal Properties

Latent Heat of Fusion, J/g 210
330
Maximum Temperature: Mechanical, °C 200
870
Melting Completion (Liquidus), °C 1080
1380
Melting Onset (Solidus), °C 1080
1330
Specific Heat Capacity, J/kg-K 390
490
Thermal Conductivity, W/m-K 240
15
Thermal Expansion, µm/m-K 17
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 58 to 74
2.5
Electrical Conductivity: Equal Weight (Specific), % IACS 58 to 75
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 30
12
Density, g/cm3 8.9
7.5
Embodied Carbon, kg CO2/kg material 2.6
2.7
Embodied Energy, MJ/kg 41
39
Embodied Water, L/kg 310
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 10 to 98
360
Resilience: Unit (Modulus of Resilience), kJ/m3 42 to 1120
390
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 18
26
Strength to Weight: Axial, points 8.8 to 17
36
Strength to Weight: Bending, points 11 to 16
29
Thermal Diffusivity, mm2/s 69
4.0
Thermal Shock Resistance, points 10 to 19
22

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0
15 to 18
Copper (Cu), % 98.5 to 99.19
0
Iron (Fe), % 0.8 to 1.2
65.6 to 73.9
Lead (Pb), % 0 to 0.030
0
Manganese (Mn), % 0
4.0 to 6.0
Nickel (Ni), % 0
4.0 to 6.0
Nitrogen (N), % 0
0.080 to 0.2
Phosphorus (P), % 0.010 to 0.040
0 to 0.040
Silicon (Si), % 0
3.0 to 4.0
Sulfur (S), % 0
0 to 0.040
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.2
0