MakeItFrom.com
Menu (ESC)

C19800 Copper vs. EN 1.0070 Steel

C19800 copper belongs to the copper alloys classification, while EN 1.0070 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C19800 copper and the bottom bar is EN 1.0070 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 9.0 to 12
9.1
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 43
73
Shear Strength, MPa 260 to 330
440
Tensile Strength: Ultimate (UTS), MPa 430 to 550
740
Tensile Strength: Yield (Proof), MPa 420 to 550
350

Thermal Properties

Latent Heat of Fusion, J/g 210
250
Maximum Temperature: Mechanical, °C 200
400
Melting Completion (Liquidus), °C 1070
1470
Melting Onset (Solidus), °C 1050
1430
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 260
53
Thermal Expansion, µm/m-K 18
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 61
6.8
Electrical Conductivity: Equal Weight (Specific), % IACS 62
7.8

Otherwise Unclassified Properties

Base Metal Price, % relative 30
1.7
Density, g/cm3 8.9
7.9
Embodied Carbon, kg CO2/kg material 2.8
1.4
Embodied Energy, MJ/kg 43
18
Embodied Water, L/kg 320
45

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 49 to 52
56
Resilience: Unit (Modulus of Resilience), kJ/m3 770 to 1320
320
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 14 to 17
26
Strength to Weight: Bending, points 14 to 17
23
Thermal Diffusivity, mm2/s 75
14
Thermal Shock Resistance, points 15 to 20
23

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Copper (Cu), % 95.7 to 99.47
0
Iron (Fe), % 0.020 to 0.5
99.876 to 100
Magnesium (Mg), % 0.1 to 1.0
0
Nitrogen (N), % 0
0 to 0.014
Phosphorus (P), % 0.010 to 0.1
0 to 0.055
Sulfur (S), % 0
0 to 0.055
Tin (Sn), % 0.1 to 1.0
0
Zinc (Zn), % 0.3 to 1.5
0
Residuals, % 0 to 0.2
0