MakeItFrom.com
Menu (ESC)

C19800 Copper vs. EN 1.4525 Stainless Steel

C19800 copper belongs to the copper alloys classification, while EN 1.4525 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C19800 copper and the bottom bar is EN 1.4525 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 9.0 to 12
5.6 to 13
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 43
76
Tensile Strength: Ultimate (UTS), MPa 430 to 550
1030 to 1250
Tensile Strength: Yield (Proof), MPa 420 to 550
840 to 1120

Thermal Properties

Latent Heat of Fusion, J/g 210
280
Maximum Temperature: Mechanical, °C 200
860
Melting Completion (Liquidus), °C 1070
1430
Melting Onset (Solidus), °C 1050
1390
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 260
18
Thermal Expansion, µm/m-K 18
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 61
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 62
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 30
13
Density, g/cm3 8.9
7.8
Embodied Carbon, kg CO2/kg material 2.8
2.8
Embodied Energy, MJ/kg 43
39
Embodied Water, L/kg 320
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 49 to 52
68 to 130
Resilience: Unit (Modulus of Resilience), kJ/m3 770 to 1320
1820 to 3230
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 14 to 17
36 to 45
Strength to Weight: Bending, points 14 to 17
29 to 33
Thermal Diffusivity, mm2/s 75
4.7
Thermal Shock Resistance, points 15 to 20
34 to 41

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0 to 0.070
Chromium (Cr), % 0
15 to 17
Copper (Cu), % 95.7 to 99.47
2.5 to 4.0
Iron (Fe), % 0.020 to 0.5
70.4 to 79
Magnesium (Mg), % 0.1 to 1.0
0
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
0 to 0.8
Nickel (Ni), % 0
3.5 to 5.5
Niobium (Nb), % 0
0 to 0.35
Nitrogen (N), % 0
0 to 0.050
Phosphorus (P), % 0.010 to 0.1
0 to 0.035
Silicon (Si), % 0
0 to 0.8
Sulfur (S), % 0
0 to 0.025
Tin (Sn), % 0.1 to 1.0
0
Zinc (Zn), % 0.3 to 1.5
0
Residuals, % 0 to 0.2
0

Comparable Variants