MakeItFrom.com
Menu (ESC)

C23000 Brass vs. AWS ER120S-1

C23000 brass belongs to the copper alloys classification, while AWS ER120S-1 belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C23000 brass and the bottom bar is AWS ER120S-1.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 2.9 to 47
17
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 42
73
Tensile Strength: Ultimate (UTS), MPa 280 to 590
930
Tensile Strength: Yield (Proof), MPa 83 to 480
830

Thermal Properties

Latent Heat of Fusion, J/g 190
260
Melting Completion (Liquidus), °C 1030
1460
Melting Onset (Solidus), °C 990
1410
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 160
46
Thermal Expansion, µm/m-K 19
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 37
7.8
Electrical Conductivity: Equal Weight (Specific), % IACS 39
9.0

Otherwise Unclassified Properties

Base Metal Price, % relative 28
4.2
Density, g/cm3 8.6
7.8
Embodied Carbon, kg CO2/kg material 2.6
1.9
Embodied Energy, MJ/kg 43
25
Embodied Water, L/kg 310
56

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.2 to 260
150
Resilience: Unit (Modulus of Resilience), kJ/m3 31 to 1040
1850
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 8.9 to 19
33
Strength to Weight: Bending, points 11 to 18
27
Thermal Diffusivity, mm2/s 48
13
Thermal Shock Resistance, points 9.4 to 20
27

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
0 to 0.1
Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0
0 to 0.6
Copper (Cu), % 84 to 86
0 to 0.25
Iron (Fe), % 0 to 0.050
92.4 to 96.1
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
1.4 to 1.8
Molybdenum (Mo), % 0
0.3 to 0.65
Nickel (Ni), % 0
2.0 to 2.8
Phosphorus (P), % 0
0 to 0.010
Silicon (Si), % 0
0.25 to 0.6
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0
0 to 0.1
Vanadium (V), % 0
0 to 0.030
Zinc (Zn), % 13.7 to 16
0
Zirconium (Zr), % 0
0 to 0.1
Residuals, % 0 to 0.2
0 to 0.5