MakeItFrom.com
Menu (ESC)

C23400 Brass vs. AWS E320

C23400 brass belongs to the copper alloys classification, while AWS E320 belongs to the iron alloys. There are 19 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C23400 brass and the bottom bar is AWS E320.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 42
77
Tensile Strength: Ultimate (UTS), MPa 370 to 640
620

Thermal Properties

Latent Heat of Fusion, J/g 190
300
Melting Completion (Liquidus), °C 970
1410
Melting Onset (Solidus), °C 930
1360
Specific Heat Capacity, J/kg-K 390
460
Thermal Expansion, µm/m-K 19
14

Otherwise Unclassified Properties

Base Metal Price, % relative 27
38
Density, g/cm3 8.5
8.2
Embodied Carbon, kg CO2/kg material 2.6
6.5
Embodied Energy, MJ/kg 43
91
Embodied Water, L/kg 320
220

Common Calculations

Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 12 to 21
21
Strength to Weight: Bending, points 13 to 19
20
Thermal Shock Resistance, points 12 to 22
16

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0 to 0.070
Chromium (Cr), % 0
19 to 21
Copper (Cu), % 81 to 84
3.0 to 4.0
Iron (Fe), % 0 to 0.050
31.8 to 43.5
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
0.5 to 2.5
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 0
32 to 36
Niobium (Nb), % 0
0 to 1.0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 0.6
Sulfur (S), % 0
0 to 0.030
Zinc (Zn), % 15.7 to 19
0
Residuals, % 0 to 0.2
0