MakeItFrom.com
Menu (ESC)

C26000 Brass vs. ASTM A182 Grade F122

C26000 brass belongs to the copper alloys classification, while ASTM A182 grade F122 belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C26000 brass and the bottom bar is ASTM A182 grade F122.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 2.5 to 66
23
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 41
76
Shear Strength, MPa 230 to 390
450
Tensile Strength: Ultimate (UTS), MPa 320 to 680
710
Tensile Strength: Yield (Proof), MPa 110 to 570
450

Thermal Properties

Latent Heat of Fusion, J/g 180
270
Maximum Temperature: Mechanical, °C 140
600
Melting Completion (Liquidus), °C 950
1490
Melting Onset (Solidus), °C 920
1440
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 120
24
Thermal Expansion, µm/m-K 20
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28
10
Electrical Conductivity: Equal Weight (Specific), % IACS 31
12

Otherwise Unclassified Properties

Base Metal Price, % relative 25
12
Density, g/cm3 8.2
8.0
Embodied Carbon, kg CO2/kg material 2.7
3.0
Embodied Energy, MJ/kg 45
44
Embodied Water, L/kg 320
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.1 to 420
140
Resilience: Unit (Modulus of Resilience), kJ/m3 51 to 1490
520
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 11 to 23
25
Strength to Weight: Bending, points 13 to 21
22
Thermal Diffusivity, mm2/s 38
6.4
Thermal Shock Resistance, points 11 to 23
19

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
0 to 0.020
Bismuth (Bi), % 0 to 0.0059
0
Boron (B), % 0
0 to 0.0050
Carbon (C), % 0
0.070 to 0.14
Chromium (Cr), % 0
10 to 11.5
Copper (Cu), % 68.5 to 71.5
0.3 to 1.7
Iron (Fe), % 0 to 0.050
81.3 to 87.7
Lead (Pb), % 0 to 0.070
0
Manganese (Mn), % 0
0 to 0.7
Molybdenum (Mo), % 0
0.25 to 0.6
Nickel (Ni), % 0
0 to 0.5
Niobium (Nb), % 0
0.040 to 0.1
Nitrogen (N), % 0
0.040 to 0.1
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0
0 to 0.010
Tungsten (W), % 0
1.5 to 2.5
Vanadium (V), % 0
0.15 to 0.3
Zinc (Zn), % 28.1 to 31.5
0
Zirconium (Zr), % 0
0 to 0.010
Residuals, % 0 to 0.3
0