MakeItFrom.com
Menu (ESC)

C26200 Brass vs. AISI 410 Stainless Steel

C26200 brass belongs to the copper alloys classification, while AISI 410 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is C26200 brass and the bottom bar is AISI 410 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 3.0 to 180
16 to 22
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 41
76
Shear Strength, MPa 230 to 390
330 to 470
Tensile Strength: Ultimate (UTS), MPa 330 to 770
520 to 770
Tensile Strength: Yield (Proof), MPa 110 to 490
290 to 580

Thermal Properties

Latent Heat of Fusion, J/g 180
270
Maximum Temperature: Mechanical, °C 140
710
Melting Completion (Liquidus), °C 950
1530
Melting Onset (Solidus), °C 920
1480
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 120
30
Thermal Expansion, µm/m-K 20
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 31
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 25
7.0
Density, g/cm3 8.2
7.7
Embodied Carbon, kg CO2/kg material 2.7
1.9
Embodied Energy, MJ/kg 45
27
Embodied Water, L/kg 320
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 19 to 160
97 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 62 to 1110
210 to 860
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 11 to 26
19 to 28
Strength to Weight: Bending, points 13 to 23
19 to 24
Thermal Diffusivity, mm2/s 38
8.1
Thermal Shock Resistance, points 11 to 26
18 to 26

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0.080 to 0.15
Chromium (Cr), % 0
11.5 to 13.5
Copper (Cu), % 67 to 70
0
Iron (Fe), % 0 to 0.050
83.5 to 88.4
Lead (Pb), % 0 to 0.070
0
Manganese (Mn), % 0
0 to 1.0
Nickel (Ni), % 0
0 to 0.75
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Zinc (Zn), % 29.6 to 33
0
Residuals, % 0 to 0.3
0