MakeItFrom.com
Menu (ESC)

C27200 Brass vs. EN 1.0456 Steel

C27200 brass belongs to the copper alloys classification, while EN 1.0456 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C27200 brass and the bottom bar is EN 1.0456 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 10 to 50
24 to 26
Poisson's Ratio 0.31
0.29
Shear Modulus, GPa 40
73
Shear Strength, MPa 230 to 320
270 to 280
Tensile Strength: Ultimate (UTS), MPa 370 to 590
420 to 450
Tensile Strength: Yield (Proof), MPa 150 to 410
290 to 300

Thermal Properties

Latent Heat of Fusion, J/g 170
250
Maximum Temperature: Mechanical, °C 130
400
Melting Completion (Liquidus), °C 920
1460
Melting Onset (Solidus), °C 870
1420
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 120
48
Thermal Expansion, µm/m-K 20
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 31
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 24
2.2
Density, g/cm3 8.1
7.8
Embodied Carbon, kg CO2/kg material 2.7
1.5
Embodied Energy, MJ/kg 45
20
Embodied Water, L/kg 320
49

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 30 to 270
93 to 99
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 810
220 to 230
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 13 to 20
15 to 16
Strength to Weight: Bending, points 14 to 19
16 to 17
Thermal Diffusivity, mm2/s 37
13
Thermal Shock Resistance, points 12 to 20
13 to 14

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
0.020 to 0.060
Carbon (C), % 0
0 to 0.2
Chromium (Cr), % 0
0 to 0.3
Copper (Cu), % 62 to 65
0 to 0.35
Iron (Fe), % 0 to 0.070
96.7 to 99.48
Lead (Pb), % 0 to 0.070
0
Manganese (Mn), % 0
0.5 to 1.4
Molybdenum (Mo), % 0
0 to 0.1
Nickel (Ni), % 0
0 to 0.3
Niobium (Nb), % 0
0 to 0.050
Nitrogen (N), % 0
0 to 0.015
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0
0 to 0.4
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0
0 to 0.030
Vanadium (V), % 0
0 to 0.050
Zinc (Zn), % 34.6 to 38
0
Residuals, % 0 to 0.3
0