MakeItFrom.com
Menu (ESC)

C31400 Bronze vs. EN 1.5662 Steel

C31400 bronze belongs to the copper alloys classification, while EN 1.5662 steel belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C31400 bronze and the bottom bar is EN 1.5662 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 6.8 to 29
20
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 42
73
Shear Strength, MPa 180 to 240
460 to 470
Tensile Strength: Ultimate (UTS), MPa 270 to 420
740 to 750
Tensile Strength: Yield (Proof), MPa 78 to 310
550 to 660

Thermal Properties

Latent Heat of Fusion, J/g 200
250
Maximum Temperature: Mechanical, °C 180
430
Melting Completion (Liquidus), °C 1040
1460
Melting Onset (Solidus), °C 1010
1410
Specific Heat Capacity, J/kg-K 380
470
Thermal Expansion, µm/m-K 18
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 42
8.7
Electrical Conductivity: Equal Weight (Specific), % IACS 43
9.8

Otherwise Unclassified Properties

Base Metal Price, % relative 29
7.5
Density, g/cm3 8.8
8.0
Embodied Carbon, kg CO2/kg material 2.6
2.3
Embodied Energy, MJ/kg 42
31
Embodied Water, L/kg 310
63

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 26 to 59
140 to 150
Resilience: Unit (Modulus of Resilience), kJ/m3 28 to 420
810 to 1150
Stiffness to Weight: Axial, points 7.1
13
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 8.7 to 13
26
Strength to Weight: Bending, points 11 to 14
23
Thermal Shock Resistance, points 9.6 to 15
22

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0 to 0.1
Copper (Cu), % 87.5 to 90.5
0
Iron (Fe), % 0 to 0.1
88.6 to 91.2
Lead (Pb), % 1.3 to 2.5
0
Manganese (Mn), % 0
0.3 to 0.8
Molybdenum (Mo), % 0
0 to 0.1
Nickel (Ni), % 0 to 0.7
8.5 to 10
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0
0 to 0.35
Sulfur (S), % 0
0 to 0.0050
Vanadium (V), % 0
0 to 0.050
Zinc (Zn), % 5.8 to 11.2
0
Residuals, % 0 to 0.4
0