MakeItFrom.com
Menu (ESC)

C32000 Brass vs. EN 1.4986 Stainless Steel

C32000 brass belongs to the copper alloys classification, while EN 1.4986 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C32000 brass and the bottom bar is EN 1.4986 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 6.8 to 29
18
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 41
77
Shear Strength, MPa 180 to 280
460
Tensile Strength: Ultimate (UTS), MPa 270 to 470
750
Tensile Strength: Yield (Proof), MPa 78 to 390
560

Thermal Properties

Latent Heat of Fusion, J/g 190
290
Maximum Temperature: Mechanical, °C 170
940
Melting Completion (Liquidus), °C 1020
1450
Melting Onset (Solidus), °C 990
1400
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 160
15
Thermal Expansion, µm/m-K 19
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 36
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 37
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 28
25
Density, g/cm3 8.7
7.9
Embodied Carbon, kg CO2/kg material 2.6
4.8
Embodied Energy, MJ/kg 42
67
Embodied Water, L/kg 310
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 30 to 59
120
Resilience: Unit (Modulus of Resilience), kJ/m3 28 to 680
790
Stiffness to Weight: Axial, points 7.1
14
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 8.8 to 15
26
Strength to Weight: Bending, points 11 to 16
23
Thermal Diffusivity, mm2/s 47
4.0
Thermal Shock Resistance, points 9.5 to 16
16

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Boron (B), % 0
0.050 to 0.1
Carbon (C), % 0
0.040 to 0.1
Chromium (Cr), % 0
15.5 to 17.5
Copper (Cu), % 83.5 to 86.5
0
Iron (Fe), % 0 to 0.1
59.4 to 66.6
Lead (Pb), % 1.5 to 2.2
0
Manganese (Mn), % 0
0 to 1.5
Molybdenum (Mo), % 0
1.6 to 2.0
Nickel (Ni), % 0 to 0.25
15.5 to 17.5
Niobium (Nb), % 0
0.4 to 1.2
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0
0.3 to 0.6
Sulfur (S), % 0
0 to 0.030
Zinc (Zn), % 10.6 to 15
0
Residuals, % 0 to 0.4
0