MakeItFrom.com
Menu (ESC)

C32000 Brass vs. EN 1.7366 Steel

C32000 brass belongs to the copper alloys classification, while EN 1.7366 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C32000 brass and the bottom bar is EN 1.7366 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 6.8 to 29
17 to 19
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 41
74
Shear Strength, MPa 180 to 280
290 to 440
Tensile Strength: Ultimate (UTS), MPa 270 to 470
460 to 710
Tensile Strength: Yield (Proof), MPa 78 to 390
230 to 480

Thermal Properties

Latent Heat of Fusion, J/g 190
260
Maximum Temperature: Mechanical, °C 170
510
Melting Completion (Liquidus), °C 1020
1460
Melting Onset (Solidus), °C 990
1420
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 160
40
Thermal Expansion, µm/m-K 19
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 36
8.1
Electrical Conductivity: Equal Weight (Specific), % IACS 37
9.3

Otherwise Unclassified Properties

Base Metal Price, % relative 28
4.3
Density, g/cm3 8.7
7.8
Embodied Carbon, kg CO2/kg material 2.6
1.7
Embodied Energy, MJ/kg 42
23
Embodied Water, L/kg 310
69

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 30 to 59
74 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 28 to 680
140 to 600
Stiffness to Weight: Axial, points 7.1
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 8.8 to 15
16 to 25
Strength to Weight: Bending, points 11 to 16
17 to 23
Thermal Diffusivity, mm2/s 47
11
Thermal Shock Resistance, points 9.5 to 16
13 to 20

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0 to 0.18
Chromium (Cr), % 0
4.0 to 6.0
Copper (Cu), % 83.5 to 86.5
0
Iron (Fe), % 0 to 0.1
91.9 to 95.3
Lead (Pb), % 1.5 to 2.2
0
Manganese (Mn), % 0
0.3 to 0.8
Molybdenum (Mo), % 0
0.45 to 0.65
Nickel (Ni), % 0 to 0.25
0
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0
0 to 0.4
Sulfur (S), % 0
0 to 0.015
Zinc (Zn), % 10.6 to 15
0
Residuals, % 0 to 0.4
0