MakeItFrom.com
Menu (ESC)

C32000 Brass vs. S46500 Stainless Steel

C32000 brass belongs to the copper alloys classification, while S46500 stainless steel belongs to the iron alloys. There are 24 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is C32000 brass and the bottom bar is S46500 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 6.8 to 29
2.3 to 14
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 41
75
Shear Strength, MPa 180 to 280
730 to 1120
Tensile Strength: Ultimate (UTS), MPa 270 to 470
1260 to 1930
Tensile Strength: Yield (Proof), MPa 78 to 390
1120 to 1810

Thermal Properties

Latent Heat of Fusion, J/g 190
280
Maximum Temperature: Mechanical, °C 170
780
Melting Completion (Liquidus), °C 1020
1450
Melting Onset (Solidus), °C 990
1410
Specific Heat Capacity, J/kg-K 380
470
Thermal Expansion, µm/m-K 19
11

Otherwise Unclassified Properties

Base Metal Price, % relative 28
15
Density, g/cm3 8.7
7.9
Embodied Carbon, kg CO2/kg material 2.6
3.6
Embodied Energy, MJ/kg 42
51
Embodied Water, L/kg 310
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 30 to 59
43 to 210
Stiffness to Weight: Axial, points 7.1
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 8.8 to 15
44 to 68
Strength to Weight: Bending, points 11 to 16
33 to 44
Thermal Shock Resistance, points 9.5 to 16
44 to 67

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0 to 0.020
Chromium (Cr), % 0
11 to 12.5
Copper (Cu), % 83.5 to 86.5
0
Iron (Fe), % 0 to 0.1
72.6 to 76.1
Lead (Pb), % 1.5 to 2.2
0
Manganese (Mn), % 0
0 to 0.25
Molybdenum (Mo), % 0
0.75 to 1.3
Nickel (Ni), % 0 to 0.25
10.7 to 11.3
Nitrogen (N), % 0
0 to 0.010
Phosphorus (P), % 0
0 to 0.015
Silicon (Si), % 0
0 to 0.25
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0
1.5 to 1.8
Zinc (Zn), % 10.6 to 15
0
Residuals, % 0 to 0.4
0