MakeItFrom.com
Menu (ESC)

C34200 Brass vs. EN 1.4935 Stainless Steel

C34200 brass belongs to the copper alloys classification, while EN 1.4935 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C34200 brass and the bottom bar is EN 1.4935 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
200
Elongation at Break, % 3.0 to 17
16 to 18
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 40
76
Shear Strength, MPa 230 to 360
480 to 540
Tensile Strength: Ultimate (UTS), MPa 370 to 650
780 to 880
Tensile Strength: Yield (Proof), MPa 150 to 420
570 to 670

Thermal Properties

Latent Heat of Fusion, J/g 170
270
Maximum Temperature: Mechanical, °C 120
740
Melting Completion (Liquidus), °C 910
1460
Melting Onset (Solidus), °C 890
1420
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 120
24
Thermal Expansion, µm/m-K 21
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 29
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 24
9.0
Density, g/cm3 8.2
7.8
Embodied Carbon, kg CO2/kg material 2.6
2.9
Embodied Energy, MJ/kg 45
42
Embodied Water, L/kg 320
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 9.0 to 98
130
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 870
830 to 1160
Stiffness to Weight: Axial, points 7.1
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 13 to 22
28 to 31
Strength to Weight: Bending, points 14 to 20
24 to 26
Thermal Diffusivity, mm2/s 37
6.5
Thermal Shock Resistance, points 12 to 22
27 to 30

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0.17 to 0.24
Chromium (Cr), % 0
11 to 12.5
Copper (Cu), % 62 to 65
0
Iron (Fe), % 0 to 0.1
83 to 86.7
Lead (Pb), % 1.5 to 2.5
0
Manganese (Mn), % 0
0.3 to 0.8
Molybdenum (Mo), % 0
0.8 to 1.2
Nickel (Ni), % 0
0.3 to 0.8
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0
0.1 to 0.5
Sulfur (S), % 0
0 to 0.015
Tungsten (W), % 0
0.4 to 0.6
Vanadium (V), % 0
0.2 to 0.35
Zinc (Zn), % 32 to 36.5
0
Residuals, % 0 to 0.4
0

Comparable Variants