MakeItFrom.com
Menu (ESC)

C34500 Brass vs. ACI-ASTM CB7Cu-2 Steel

C34500 brass belongs to the copper alloys classification, while ACI-ASTM CB7Cu-2 steel belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C34500 brass and the bottom bar is ACI-ASTM CB7Cu-2 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
190
Elongation at Break, % 12 to 28
5.7 to 11
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 40
75
Tensile Strength: Ultimate (UTS), MPa 340 to 430
960 to 1350
Tensile Strength: Yield (Proof), MPa 120 to 180
760 to 1180

Thermal Properties

Latent Heat of Fusion, J/g 170
280
Melting Completion (Liquidus), °C 910
1430
Melting Onset (Solidus), °C 890
1380
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 120
17
Thermal Expansion, µm/m-K 21
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
2.1
Electrical Conductivity: Equal Weight (Specific), % IACS 29
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 24
13
Density, g/cm3 8.2
7.8
Embodied Carbon, kg CO2/kg material 2.6
2.6
Embodied Energy, MJ/kg 45
38
Embodied Water, L/kg 320
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 42 to 75
71 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 69 to 160
1510 to 3600
Stiffness to Weight: Axial, points 7.1
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 12 to 15
34 to 48
Strength to Weight: Bending, points 13 to 16
28 to 35
Thermal Diffusivity, mm2/s 37
4.6
Thermal Shock Resistance, points 11 to 14
32 to 45

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0 to 0.070
Chromium (Cr), % 0
14 to 15.5
Copper (Cu), % 62 to 65
2.5 to 3.2
Iron (Fe), % 0 to 0.15
73.6 to 79
Lead (Pb), % 1.5 to 2.5
0
Manganese (Mn), % 0
0 to 0.7
Nickel (Ni), % 0
4.5 to 5.5
Niobium (Nb), % 0
0 to 0.35
Nitrogen (N), % 0
0 to 0.050
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Zinc (Zn), % 32 to 36.5
0
Residuals, % 0 to 0.4
0