MakeItFrom.com
Menu (ESC)

C37000 Muntz Metal vs. AISI 403 Stainless Steel

C37000 Muntz Metal belongs to the copper alloys classification, while AISI 403 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C37000 Muntz Metal and the bottom bar is AISI 403 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
190
Elongation at Break, % 40
16 to 25
Poisson's Ratio 0.31
0.28
Rockwell B Hardness 45
83
Shear Modulus, GPa 39
76
Shear Strength, MPa 270
340 to 480
Tensile Strength: Ultimate (UTS), MPa 400
530 to 780
Tensile Strength: Yield (Proof), MPa 160
280 to 570

Thermal Properties

Latent Heat of Fusion, J/g 170
270
Maximum Temperature: Mechanical, °C 120
740
Melting Completion (Liquidus), °C 900
1450
Melting Onset (Solidus), °C 890
1400
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 120
28
Thermal Expansion, µm/m-K 21
9.9

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 27
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 30
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 23
6.5
Density, g/cm3 8.1
7.8
Embodied Carbon, kg CO2/kg material 2.7
1.9
Embodied Energy, MJ/kg 45
27
Embodied Water, L/kg 320
99

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
110 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 120
210 to 840
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 14
19 to 28
Strength to Weight: Bending, points 15
19 to 24
Thermal Diffusivity, mm2/s 39
7.6
Thermal Shock Resistance, points 13
20 to 29

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0
11.5 to 13
Copper (Cu), % 59 to 62
0
Iron (Fe), % 0 to 0.15
84.7 to 88.5
Lead (Pb), % 0.8 to 1.5
0
Manganese (Mn), % 0
0 to 1.0
Nickel (Ni), % 0
0 to 0.6
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0
0 to 0.030
Zinc (Zn), % 36 to 40.2
0
Residuals, % 0 to 0.4
0