MakeItFrom.com
Menu (ESC)

C37000 Muntz Metal vs. S32654 Stainless Steel

C37000 Muntz Metal belongs to the copper alloys classification, while S32654 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C37000 Muntz Metal and the bottom bar is S32654 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
210
Elongation at Break, % 40
45
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 39
82
Shear Strength, MPa 270
590
Tensile Strength: Ultimate (UTS), MPa 400
850
Tensile Strength: Yield (Proof), MPa 160
490

Thermal Properties

Latent Heat of Fusion, J/g 170
310
Maximum Temperature: Mechanical, °C 120
1100
Melting Completion (Liquidus), °C 900
1450
Melting Onset (Solidus), °C 890
1410
Specific Heat Capacity, J/kg-K 380
460
Thermal Conductivity, W/m-K 120
11
Thermal Expansion, µm/m-K 21
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 27
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 30
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 23
34
Density, g/cm3 8.1
8.0
Embodied Carbon, kg CO2/kg material 2.7
6.4
Embodied Energy, MJ/kg 45
87
Embodied Water, L/kg 320
220

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
330
Resilience: Unit (Modulus of Resilience), kJ/m3 120
570
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 14
29
Strength to Weight: Bending, points 15
25
Thermal Diffusivity, mm2/s 39
2.9
Thermal Shock Resistance, points 13
19

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0 to 0.020
Chromium (Cr), % 0
24 to 25
Copper (Cu), % 59 to 62
0.3 to 0.6
Iron (Fe), % 0 to 0.15
38.3 to 45.3
Lead (Pb), % 0.8 to 1.5
0
Manganese (Mn), % 0
2.0 to 4.0
Molybdenum (Mo), % 0
7.0 to 8.0
Nickel (Ni), % 0
21 to 23
Nitrogen (N), % 0
0.45 to 0.55
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0
0 to 0.0050
Zinc (Zn), % 36 to 40.2
0
Residuals, % 0 to 0.4
0