MakeItFrom.com
Menu (ESC)

C38500 Bronze vs. EN 1.4594 Stainless Steel

C38500 bronze belongs to the copper alloys classification, while EN 1.4594 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C38500 bronze and the bottom bar is EN 1.4594 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
200
Elongation at Break, % 17
11 to 17
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 37
76
Shear Strength, MPa 230
620 to 700
Tensile Strength: Ultimate (UTS), MPa 370
1020 to 1170
Tensile Strength: Yield (Proof), MPa 130
810 to 1140

Thermal Properties

Latent Heat of Fusion, J/g 160
280
Maximum Temperature: Mechanical, °C 110
820
Melting Completion (Liquidus), °C 890
1450
Melting Onset (Solidus), °C 880
1410
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 120
16
Thermal Expansion, µm/m-K 21
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 31
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 22
15
Density, g/cm3 8.1
7.9
Embodied Carbon, kg CO2/kg material 2.6
3.2
Embodied Energy, MJ/kg 45
45
Embodied Water, L/kg 320
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 48
110 to 190
Resilience: Unit (Modulus of Resilience), kJ/m3 78
1660 to 3320
Stiffness to Weight: Axial, points 7.0
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 13
36 to 41
Strength to Weight: Bending, points 14
29 to 31
Thermal Diffusivity, mm2/s 40
4.4
Thermal Shock Resistance, points 12
34 to 39

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0 to 0.070
Chromium (Cr), % 0
13 to 15
Copper (Cu), % 55 to 59
1.2 to 2.0
Iron (Fe), % 0 to 0.35
72.6 to 79.5
Lead (Pb), % 2.5 to 3.5
0
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
1.2 to 2.0
Nickel (Ni), % 0
5.0 to 6.0
Niobium (Nb), % 0
0.15 to 0.6
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 0.7
Sulfur (S), % 0
0 to 0.015
Zinc (Zn), % 36.7 to 42.5
0
Residuals, % 0 to 0.5
0