MakeItFrom.com
Menu (ESC)

C40500 Penny Bronze vs. EN 1.4659 Stainless Steel

C40500 penny bronze belongs to the copper alloys classification, while EN 1.4659 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C40500 penny bronze and the bottom bar is EN 1.4659 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
210
Elongation at Break, % 3.0 to 49
49
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 43
81
Shear Strength, MPa 210 to 310
640
Tensile Strength: Ultimate (UTS), MPa 270 to 540
900
Tensile Strength: Yield (Proof), MPa 79 to 520
480

Thermal Properties

Latent Heat of Fusion, J/g 200
300
Maximum Temperature: Mechanical, °C 190
1100
Melting Completion (Liquidus), °C 1060
1480
Melting Onset (Solidus), °C 1020
1430
Specific Heat Capacity, J/kg-K 380
460
Thermal Conductivity, W/m-K 160
12
Thermal Expansion, µm/m-K 18
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 41
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 42
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 30
37
Density, g/cm3 8.8
8.2
Embodied Carbon, kg CO2/kg material 2.7
6.5
Embodied Energy, MJ/kg 43
89
Embodied Water, L/kg 320
220

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 16 to 110
370
Resilience: Unit (Modulus of Resilience), kJ/m3 28 to 1200
550
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 8.5 to 17
31
Strength to Weight: Bending, points 10 to 17
25
Thermal Diffusivity, mm2/s 48
3.2
Thermal Shock Resistance, points 9.5 to 19
19

Alloy Composition

Carbon (C), % 0
0 to 0.020
Chromium (Cr), % 0
23 to 25
Copper (Cu), % 94 to 96
1.0 to 2.0
Iron (Fe), % 0 to 0.050
35.7 to 45.7
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
2.0 to 4.0
Molybdenum (Mo), % 0
5.5 to 6.5
Nickel (Ni), % 0
21 to 23
Nitrogen (N), % 0
0.35 to 0.5
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0
0 to 0.7
Sulfur (S), % 0
0 to 0.010
Tin (Sn), % 0.7 to 1.3
0
Tungsten (W), % 0
1.5 to 2.5
Zinc (Zn), % 2.1 to 5.3
0
Residuals, % 0 to 0.5
0