MakeItFrom.com
Menu (ESC)

C41300 Brass vs. C92900 Bronze

Both C41300 brass and C92900 bronze are copper alloys. They have 85% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C41300 brass and the bottom bar is C92900 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 2.0 to 44
9.1
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 42
40
Tensile Strength: Ultimate (UTS), MPa 300 to 630
350
Tensile Strength: Yield (Proof), MPa 120 to 570
190

Thermal Properties

Latent Heat of Fusion, J/g 200
190
Maximum Temperature: Mechanical, °C 180
170
Melting Completion (Liquidus), °C 1040
1030
Melting Onset (Solidus), °C 1010
860
Specific Heat Capacity, J/kg-K 380
370
Thermal Conductivity, W/m-K 130
58
Thermal Expansion, µm/m-K 18
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30
9.0
Electrical Conductivity: Equal Weight (Specific), % IACS 31
9.2

Otherwise Unclassified Properties

Base Metal Price, % relative 29
35
Density, g/cm3 8.7
8.8
Embodied Carbon, kg CO2/kg material 2.7
3.8
Embodied Energy, MJ/kg 44
61
Embodied Water, L/kg 320
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11 to 110
27
Resilience: Unit (Modulus of Resilience), kJ/m3 69 to 1440
170
Stiffness to Weight: Axial, points 7.2
6.8
Stiffness to Weight: Bending, points 18
18
Strength to Weight: Axial, points 9.6 to 20
11
Strength to Weight: Bending, points 11 to 19
13
Thermal Diffusivity, mm2/s 40
18
Thermal Shock Resistance, points 11 to 22
13

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.25
Copper (Cu), % 89 to 93
82 to 86
Iron (Fe), % 0 to 0.050
0 to 0.2
Lead (Pb), % 0 to 0.1
2.0 to 3.2
Nickel (Ni), % 0
2.8 to 4.0
Phosphorus (P), % 0
0 to 1.5
Silicon (Si), % 0
0 to 0.0050
Sulfur (S), % 0
0 to 0.050
Tin (Sn), % 0.7 to 1.3
9.0 to 11
Zinc (Zn), % 5.1 to 10.3
0 to 0.25
Residuals, % 0 to 0.5
0 to 0.7