MakeItFrom.com
Menu (ESC)

C42600 Brass vs. SAE-AISI 5140 Steel

C42600 brass belongs to the copper alloys classification, while SAE-AISI 5140 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C42600 brass and the bottom bar is SAE-AISI 5140 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 1.1 to 40
12 to 29
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 42
73
Shear Strength, MPa 280 to 470
360 to 600
Tensile Strength: Ultimate (UTS), MPa 410 to 830
560 to 970
Tensile Strength: Yield (Proof), MPa 220 to 810
290 to 840

Thermal Properties

Latent Heat of Fusion, J/g 200
250
Maximum Temperature: Mechanical, °C 180
420
Melting Completion (Liquidus), °C 1030
1460
Melting Onset (Solidus), °C 1010
1420
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 110
45
Thermal Expansion, µm/m-K 18
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 26
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 31
2.1
Density, g/cm3 8.7
7.8
Embodied Carbon, kg CO2/kg material 2.9
1.4
Embodied Energy, MJ/kg 48
19
Embodied Water, L/kg 340
49

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 9.4 to 140
76 to 180
Resilience: Unit (Modulus of Resilience), kJ/m3 230 to 2970
220 to 1880
Stiffness to Weight: Axial, points 7.1
13
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 13 to 27
20 to 34
Strength to Weight: Bending, points 14 to 23
19 to 28
Thermal Diffusivity, mm2/s 33
12
Thermal Shock Resistance, points 15 to 29
16 to 29

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0.38 to 0.43
Chromium (Cr), % 0
0.7 to 0.9
Copper (Cu), % 87 to 90
0
Iron (Fe), % 0.050 to 0.2
97.3 to 98.1
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
0.7 to 0.9
Nickel (Ni), % 0.050 to 0.2
0
Phosphorus (P), % 0.020 to 0.050
0 to 0.035
Silicon (Si), % 0
0.15 to 0.35
Sulfur (S), % 0
0 to 0.040
Tin (Sn), % 2.5 to 4.0
0
Zinc (Zn), % 5.3 to 10.4
0
Residuals, % 0 to 0.2
0