MakeItFrom.com
Menu (ESC)

C43000 Brass vs. S32654 Stainless Steel

C43000 brass belongs to the copper alloys classification, while S32654 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C43000 brass and the bottom bar is S32654 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
210
Elongation at Break, % 3.0 to 55
45
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 42
82
Shear Strength, MPa 230 to 410
590
Tensile Strength: Ultimate (UTS), MPa 320 to 710
850
Tensile Strength: Yield (Proof), MPa 130 to 550
490

Thermal Properties

Latent Heat of Fusion, J/g 190
310
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 1030
1450
Melting Onset (Solidus), °C 1000
1410
Specific Heat Capacity, J/kg-K 380
460
Thermal Conductivity, W/m-K 120
11
Thermal Expansion, µm/m-K 18
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 27
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 28
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 29
34
Density, g/cm3 8.6
8.0
Embodied Carbon, kg CO2/kg material 2.8
6.4
Embodied Energy, MJ/kg 46
87
Embodied Water, L/kg 330
220

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 20 to 150
330
Resilience: Unit (Modulus of Resilience), kJ/m3 82 to 1350
570
Stiffness to Weight: Axial, points 7.1
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 10 to 23
29
Strength to Weight: Bending, points 12 to 20
25
Thermal Diffusivity, mm2/s 36
2.9
Thermal Shock Resistance, points 11 to 25
19

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0 to 0.020
Chromium (Cr), % 0
24 to 25
Copper (Cu), % 84 to 87
0.3 to 0.6
Iron (Fe), % 0 to 0.050
38.3 to 45.3
Lead (Pb), % 0 to 0.1
0
Manganese (Mn), % 0
2.0 to 4.0
Molybdenum (Mo), % 0
7.0 to 8.0
Nickel (Ni), % 0
21 to 23
Nitrogen (N), % 0
0.45 to 0.55
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0
0 to 0.0050
Tin (Sn), % 1.7 to 2.7
0
Zinc (Zn), % 9.7 to 14.3
0
Residuals, % 0 to 0.5
0