MakeItFrom.com
Menu (ESC)

C43400 Brass vs. N06920 Nickel

C43400 brass belongs to the copper alloys classification, while N06920 nickel belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C43400 brass and the bottom bar is N06920 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
210
Elongation at Break, % 3.0 to 49
39
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 42
82
Shear Strength, MPa 250 to 390
500
Tensile Strength: Ultimate (UTS), MPa 310 to 690
730
Tensile Strength: Yield (Proof), MPa 110 to 560
270

Thermal Properties

Latent Heat of Fusion, J/g 190
320
Maximum Temperature: Mechanical, °C 170
990
Melting Completion (Liquidus), °C 1020
1500
Melting Onset (Solidus), °C 990
1440
Specific Heat Capacity, J/kg-K 380
440
Thermal Conductivity, W/m-K 140
11
Thermal Expansion, µm/m-K 19
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 31
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 32
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 28
55
Density, g/cm3 8.6
8.6
Embodied Carbon, kg CO2/kg material 2.7
9.4
Embodied Energy, MJ/kg 44
130
Embodied Water, L/kg 320
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 19 to 120
230
Resilience: Unit (Modulus of Resilience), kJ/m3 57 to 1420
180
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 19
23
Strength to Weight: Axial, points 10 to 22
24
Strength to Weight: Bending, points 12 to 20
21
Thermal Diffusivity, mm2/s 41
2.8
Thermal Shock Resistance, points 11 to 24
19

Alloy Composition

Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
20.5 to 23
Cobalt (Co), % 0
0 to 5.0
Copper (Cu), % 84 to 87
0
Iron (Fe), % 0 to 0.050
17 to 20
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
8.0 to 10
Nickel (Ni), % 0
36.9 to 53.5
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0.4 to 1.0
0
Tungsten (W), % 0
1.0 to 3.0
Zinc (Zn), % 11.4 to 15.6
0
Residuals, % 0 to 0.5
0