MakeItFrom.com
Menu (ESC)

C43400 Brass vs. S44537 Stainless Steel

C43400 brass belongs to the copper alloys classification, while S44537 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C43400 brass and the bottom bar is S44537 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 3.0 to 49
21
Poisson's Ratio 0.33
0.27
Rockwell B Hardness 54 to 94
80
Shear Modulus, GPa 42
79
Shear Strength, MPa 250 to 390
320
Tensile Strength: Ultimate (UTS), MPa 310 to 690
510
Tensile Strength: Yield (Proof), MPa 110 to 560
360

Thermal Properties

Latent Heat of Fusion, J/g 190
290
Maximum Temperature: Mechanical, °C 170
1000
Melting Completion (Liquidus), °C 1020
1480
Melting Onset (Solidus), °C 990
1430
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 140
21
Thermal Expansion, µm/m-K 19
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 31
2.6
Electrical Conductivity: Equal Weight (Specific), % IACS 32
3.0

Otherwise Unclassified Properties

Base Metal Price, % relative 28
19
Density, g/cm3 8.6
7.9
Embodied Carbon, kg CO2/kg material 2.7
3.4
Embodied Energy, MJ/kg 44
50
Embodied Water, L/kg 320
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 19 to 120
95
Resilience: Unit (Modulus of Resilience), kJ/m3 57 to 1420
320
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 10 to 22
18
Strength to Weight: Bending, points 12 to 20
18
Thermal Diffusivity, mm2/s 41
5.6
Thermal Shock Resistance, points 11 to 24
17

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
0 to 0.1
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
20 to 24
Copper (Cu), % 84 to 87
0 to 0.5
Iron (Fe), % 0 to 0.050
69 to 78.6
Lanthanum (La), % 0
0.040 to 0.2
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
0 to 0.8
Nickel (Ni), % 0
0 to 0.5
Niobium (Nb), % 0
0.2 to 1.0
Nitrogen (N), % 0
0 to 0.040
Phosphorus (P), % 0
0 to 0.050
Silicon (Si), % 0
0.1 to 0.6
Sulfur (S), % 0
0 to 0.0060
Tin (Sn), % 0.4 to 1.0
0
Titanium (Ti), % 0
0.020 to 0.2
Tungsten (W), % 0
1.0 to 3.0
Zinc (Zn), % 11.4 to 15.6
0
Residuals, % 0 to 0.5
0