MakeItFrom.com
Menu (ESC)

C43500 Brass vs. ASTM A182 Grade F36

C43500 brass belongs to the copper alloys classification, while ASTM A182 grade F36 belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C43500 brass and the bottom bar is ASTM A182 grade F36.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 8.5 to 46
17
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 42
73
Shear Strength, MPa 220 to 310
440
Tensile Strength: Ultimate (UTS), MPa 320 to 530
710
Tensile Strength: Yield (Proof), MPa 120 to 480
490

Thermal Properties

Latent Heat of Fusion, J/g 190
250
Maximum Temperature: Mechanical, °C 160
410
Melting Completion (Liquidus), °C 1000
1460
Melting Onset (Solidus), °C 970
1420
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 120
39
Thermal Expansion, µm/m-K 19
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28
7.6
Electrical Conductivity: Equal Weight (Specific), % IACS 30
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 28
3.4
Density, g/cm3 8.5
7.9
Embodied Carbon, kg CO2/kg material 2.7
1.7
Embodied Energy, MJ/kg 45
22
Embodied Water, L/kg 320
53

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 44 to 120
110
Resilience: Unit (Modulus of Resilience), kJ/m3 65 to 1040
650
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 10 to 17
25
Strength to Weight: Bending, points 12 to 17
22
Thermal Diffusivity, mm2/s 37
10
Thermal Shock Resistance, points 11 to 18
21

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
0 to 0.050
Carbon (C), % 0
0.1 to 0.17
Chromium (Cr), % 0
0 to 0.3
Copper (Cu), % 79 to 83
0.5 to 0.8
Iron (Fe), % 0 to 0.050
95 to 97.1
Lead (Pb), % 0 to 0.090
0
Manganese (Mn), % 0
0.8 to 1.2
Molybdenum (Mo), % 0
0.25 to 0.5
Nickel (Ni), % 0
1.0 to 1.3
Niobium (Nb), % 0
0.015 to 0.045
Nitrogen (N), % 0
0 to 0.020
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0
0.25 to 0.5
Sulfur (S), % 0
0 to 0.025
Tin (Sn), % 0.6 to 1.2
0
Vanadium (V), % 0
0 to 0.020
Zinc (Zn), % 15.4 to 20.4
0
Residuals, % 0 to 0.3
0