MakeItFrom.com
Menu (ESC)

C43500 Brass vs. EN 1.0314 Steel

C43500 brass belongs to the copper alloys classification, while EN 1.0314 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C43500 brass and the bottom bar is EN 1.0314 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 8.5 to 46
24 to 25
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 42
73
Shear Strength, MPa 220 to 310
200 to 250
Tensile Strength: Ultimate (UTS), MPa 320 to 530
320 to 400
Tensile Strength: Yield (Proof), MPa 120 to 480
190 to 310

Thermal Properties

Latent Heat of Fusion, J/g 190
250
Maximum Temperature: Mechanical, °C 160
400
Melting Completion (Liquidus), °C 1000
1470
Melting Onset (Solidus), °C 970
1430
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 120
53
Thermal Expansion, µm/m-K 19
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28
6.9
Electrical Conductivity: Equal Weight (Specific), % IACS 30
7.9

Otherwise Unclassified Properties

Base Metal Price, % relative 28
1.8
Density, g/cm3 8.5
7.9
Embodied Carbon, kg CO2/kg material 2.7
1.4
Embodied Energy, MJ/kg 45
18
Embodied Water, L/kg 320
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 44 to 120
68 to 87
Resilience: Unit (Modulus of Resilience), kJ/m3 65 to 1040
95 to 250
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 10 to 17
11 to 14
Strength to Weight: Bending, points 12 to 17
13 to 15
Thermal Diffusivity, mm2/s 37
14
Thermal Shock Resistance, points 11 to 18
10 to 13

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
0.020 to 0.060
Carbon (C), % 0
0 to 0.030
Copper (Cu), % 79 to 83
0
Iron (Fe), % 0 to 0.050
99.365 to 99.78
Lead (Pb), % 0 to 0.090
0
Manganese (Mn), % 0
0.2 to 0.4
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0
0 to 0.1
Sulfur (S), % 0
0 to 0.025
Tin (Sn), % 0.6 to 1.2
0
Zinc (Zn), % 15.4 to 20.4
0
Residuals, % 0 to 0.3
0