MakeItFrom.com
Menu (ESC)

C47940 Brass vs. EN 1.4034 Stainless Steel

C47940 brass belongs to the copper alloys classification, while EN 1.4034 stainless steel belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C47940 brass and the bottom bar is EN 1.4034 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
190
Elongation at Break, % 14 to 34
11 to 14
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 40
76
Shear Strength, MPa 250 to 310
420 to 540
Tensile Strength: Ultimate (UTS), MPa 380 to 520
690 to 900
Tensile Strength: Yield (Proof), MPa 160 to 390
390 to 730

Thermal Properties

Latent Heat of Fusion, J/g 170
270
Maximum Temperature: Mechanical, °C 130
770
Melting Completion (Liquidus), °C 850
1440
Melting Onset (Solidus), °C 800
1390
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 110
30
Thermal Expansion, µm/m-K 20
11

Otherwise Unclassified Properties

Base Metal Price, % relative 25
7.0
Density, g/cm3 8.2
7.7
Embodied Carbon, kg CO2/kg material 2.8
2.0
Embodied Energy, MJ/kg 47
27
Embodied Water, L/kg 330
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 68 to 100
81 to 94
Resilience: Unit (Modulus of Resilience), kJ/m3 120 to 740
400 to 1370
Stiffness to Weight: Axial, points 7.1
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 13 to 17
25 to 32
Strength to Weight: Bending, points 14 to 17
22 to 27
Thermal Diffusivity, mm2/s 36
8.1
Thermal Shock Resistance, points 13 to 17
24 to 32

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0.43 to 0.5
Chromium (Cr), % 0
12.5 to 14.5
Copper (Cu), % 63 to 66
0
Iron (Fe), % 0.1 to 1.0
83 to 87.1
Lead (Pb), % 1.0 to 2.0
0
Manganese (Mn), % 0
0 to 1.0
Nickel (Ni), % 0.1 to 0.5
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 1.2 to 2.0
0
Zinc (Zn), % 28.1 to 34.6
0
Residuals, % 0 to 0.4
0