MakeItFrom.com
Menu (ESC)

C48600 Brass vs. EN 1.0314 Steel

C48600 brass belongs to the copper alloys classification, while EN 1.0314 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C48600 brass and the bottom bar is EN 1.0314 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
190
Elongation at Break, % 20 to 25
24 to 25
Poisson's Ratio 0.31
0.29
Shear Modulus, GPa 39
73
Shear Strength, MPa 180 to 230
200 to 250
Tensile Strength: Ultimate (UTS), MPa 280 to 360
320 to 400
Tensile Strength: Yield (Proof), MPa 110 to 170
190 to 310

Thermal Properties

Latent Heat of Fusion, J/g 170
250
Maximum Temperature: Mechanical, °C 120
400
Melting Completion (Liquidus), °C 900
1470
Melting Onset (Solidus), °C 890
1430
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 110
53
Thermal Expansion, µm/m-K 21
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
6.9
Electrical Conductivity: Equal Weight (Specific), % IACS 28
7.9

Otherwise Unclassified Properties

Base Metal Price, % relative 24
1.8
Density, g/cm3 8.1
7.9
Embodied Carbon, kg CO2/kg material 2.8
1.4
Embodied Energy, MJ/kg 47
18
Embodied Water, L/kg 330
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 55 to 59
68 to 87
Resilience: Unit (Modulus of Resilience), kJ/m3 61 to 140
95 to 250
Stiffness to Weight: Axial, points 7.1
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 9.5 to 12
11 to 14
Strength to Weight: Bending, points 12 to 14
13 to 15
Thermal Diffusivity, mm2/s 36
14
Thermal Shock Resistance, points 9.3 to 12
10 to 13

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
0.020 to 0.060
Arsenic (As), % 0.020 to 0.25
0
Carbon (C), % 0
0 to 0.030
Copper (Cu), % 59 to 62
0
Iron (Fe), % 0
99.365 to 99.78
Lead (Pb), % 1.0 to 2.5
0
Manganese (Mn), % 0
0.2 to 0.4
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0
0 to 0.1
Sulfur (S), % 0
0 to 0.025
Tin (Sn), % 0.3 to 1.5
0
Zinc (Zn), % 33.4 to 39.7
0
Residuals, % 0 to 0.4
0