MakeItFrom.com
Menu (ESC)

C48600 Brass vs. SAE-AISI 1090 Steel

C48600 brass belongs to the copper alloys classification, while SAE-AISI 1090 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C48600 brass and the bottom bar is SAE-AISI 1090 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
190
Elongation at Break, % 20 to 25
11
Poisson's Ratio 0.31
0.29
Shear Modulus, GPa 39
72
Shear Strength, MPa 180 to 230
470 to 570
Tensile Strength: Ultimate (UTS), MPa 280 to 360
790 to 950
Tensile Strength: Yield (Proof), MPa 110 to 170
520 to 610

Thermal Properties

Latent Heat of Fusion, J/g 170
240
Maximum Temperature: Mechanical, °C 120
400
Melting Completion (Liquidus), °C 900
1450
Melting Onset (Solidus), °C 890
1410
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 110
50
Thermal Expansion, µm/m-K 21
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
7.1
Electrical Conductivity: Equal Weight (Specific), % IACS 28
8.2

Otherwise Unclassified Properties

Base Metal Price, % relative 24
1.8
Density, g/cm3 8.1
7.8
Embodied Carbon, kg CO2/kg material 2.8
1.4
Embodied Energy, MJ/kg 47
19
Embodied Water, L/kg 330
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 55 to 59
82 to 91
Resilience: Unit (Modulus of Resilience), kJ/m3 61 to 140
730 to 1000
Stiffness to Weight: Axial, points 7.1
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 9.5 to 12
28 to 34
Strength to Weight: Bending, points 12 to 14
24 to 27
Thermal Diffusivity, mm2/s 36
13
Thermal Shock Resistance, points 9.3 to 12
25 to 31

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Arsenic (As), % 0.020 to 0.25
0
Carbon (C), % 0
0.85 to 1.0
Copper (Cu), % 59 to 62
0
Iron (Fe), % 0
98 to 98.6
Lead (Pb), % 1.0 to 2.5
0
Manganese (Mn), % 0
0.6 to 0.9
Phosphorus (P), % 0
0 to 0.040
Sulfur (S), % 0
0 to 0.050
Tin (Sn), % 0.3 to 1.5
0
Zinc (Zn), % 33.4 to 39.7
0
Residuals, % 0 to 0.4
0