MakeItFrom.com
Menu (ESC)

C50100 Bronze vs. EN 1.4374 Stainless Steel

C50100 bronze belongs to the copper alloys classification, while EN 1.4374 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C50100 bronze and the bottom bar is EN 1.4374 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 40
40
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 43
77
Shear Strength, MPa 180
550
Tensile Strength: Ultimate (UTS), MPa 270
800
Tensile Strength: Yield (Proof), MPa 82
400

Thermal Properties

Latent Heat of Fusion, J/g 210
290
Maximum Temperature: Mechanical, °C 200
920
Melting Completion (Liquidus), °C 1080
1400
Melting Onset (Solidus), °C 1070
1360
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 230
15
Thermal Expansion, µm/m-K 17
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 55
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 55
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 31
14
Density, g/cm3 8.9
7.7
Embodied Carbon, kg CO2/kg material 2.6
2.9
Embodied Energy, MJ/kg 42
42
Embodied Water, L/kg 310
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 82
270
Resilience: Unit (Modulus of Resilience), kJ/m3 29
400
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 8.3
29
Strength to Weight: Bending, points 10
25
Thermal Diffusivity, mm2/s 66
4.0
Thermal Shock Resistance, points 9.5
17

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0.050 to 0.1
Chromium (Cr), % 0
17.5 to 18.5
Copper (Cu), % 98.6 to 99.49
0 to 0.4
Iron (Fe), % 0 to 0.050
63.5 to 67.9
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
9.0 to 10
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0
5.0 to 6.0
Nitrogen (N), % 0
0.25 to 0.32
Phosphorus (P), % 0.010 to 0.050
0 to 0.035
Silicon (Si), % 0
0.3 to 0.6
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0.5 to 0.8
0
Residuals, % 0 to 0.5
0