MakeItFrom.com
Menu (ESC)

C51100 Bronze vs. C65500 Bronze

Both C51100 bronze and C65500 bronze are copper alloys. They have a moderately high 95% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C51100 bronze and the bottom bar is C65500 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
120
Elongation at Break, % 2.5 to 50
4.0 to 70
Poisson's Ratio 0.34
0.34
Rockwell B Hardness 67 to 93
62 to 97
Shear Modulus, GPa 42
43
Shear Strength, MPa 230 to 410
260 to 440
Tensile Strength: Ultimate (UTS), MPa 330 to 720
360 to 760
Tensile Strength: Yield (Proof), MPa 93 to 700
120 to 430

Thermal Properties

Latent Heat of Fusion, J/g 200
260
Maximum Temperature: Mechanical, °C 190
200
Melting Completion (Liquidus), °C 1060
1030
Melting Onset (Solidus), °C 970
970
Specific Heat Capacity, J/kg-K 380
400
Thermal Conductivity, W/m-K 84
36
Thermal Expansion, µm/m-K 18
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 20
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 20
7.3

Otherwise Unclassified Properties

Base Metal Price, % relative 32
29
Density, g/cm3 8.9
8.6
Embodied Carbon, kg CO2/kg material 3.0
2.7
Embodied Energy, MJ/kg 48
42
Embodied Water, L/kg 340
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 18 to 140
11 to 450
Resilience: Unit (Modulus of Resilience), kJ/m3 38 to 2170
62 to 790
Stiffness to Weight: Axial, points 7.1
7.5
Stiffness to Weight: Bending, points 18
19
Strength to Weight: Axial, points 10 to 22
12 to 24
Strength to Weight: Bending, points 12 to 20
13 to 21
Thermal Diffusivity, mm2/s 25
10
Thermal Shock Resistance, points 12 to 26
12 to 26

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Copper (Cu), % 93.8 to 96.5
91.5 to 96.7
Iron (Fe), % 0 to 0.1
0 to 0.8
Lead (Pb), % 0 to 0.050
0 to 0.050
Manganese (Mn), % 0
0.5 to 1.3
Nickel (Ni), % 0
0 to 0.6
Phosphorus (P), % 0.030 to 0.35
0
Silicon (Si), % 0
2.8 to 3.8
Tin (Sn), % 3.5 to 4.9
0
Zinc (Zn), % 0 to 0.3
0 to 1.5
Residuals, % 0 to 0.5
0 to 0.5

Comparable Variants