MakeItFrom.com
Menu (ESC)

C52400 Bronze vs. 380.0 Aluminum

C52400 bronze belongs to the copper alloys classification, while 380.0 aluminum belongs to the aluminum alloys. There are 24 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C52400 bronze and the bottom bar is 380.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
74
Poisson's Ratio 0.34
0.33
Shear Modulus, GPa 41
28
Tensile Strength: Ultimate (UTS), MPa 450 to 880
320

Thermal Properties

Latent Heat of Fusion, J/g 190
510
Maximum Temperature: Mechanical, °C 170
170
Melting Completion (Liquidus), °C 1000
590
Melting Onset (Solidus), °C 840
540
Specific Heat Capacity, J/kg-K 370
870
Thermal Conductivity, W/m-K 50
100
Thermal Expansion, µm/m-K 18
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
27
Electrical Conductivity: Equal Weight (Specific), % IACS 11
83

Otherwise Unclassified Properties

Base Metal Price, % relative 35
10
Density, g/cm3 8.8
2.9
Embodied Carbon, kg CO2/kg material 3.6
7.5
Embodied Energy, MJ/kg 58
140
Embodied Water, L/kg 390
1040

Common Calculations

Stiffness to Weight: Axial, points 6.9
14
Stiffness to Weight: Bending, points 18
48
Strength to Weight: Axial, points 14 to 28
31
Strength to Weight: Bending, points 15 to 23
36
Thermal Diffusivity, mm2/s 15
40
Thermal Shock Resistance, points 17 to 32
14

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
79.6 to 89.5
Copper (Cu), % 87.8 to 91
3.0 to 4.0
Iron (Fe), % 0 to 0.1
0 to 2.0
Lead (Pb), % 0 to 0.050
0
Magnesium (Mg), % 0
0 to 0.1
Manganese (Mn), % 0
0 to 0.5
Nickel (Ni), % 0
0 to 0.5
Phosphorus (P), % 0.030 to 0.35
0
Silicon (Si), % 0
7.5 to 9.5
Tin (Sn), % 9.0 to 11
0 to 0.35
Zinc (Zn), % 0 to 0.2
0 to 3.0
Residuals, % 0 to 0.5
0 to 0.5