MakeItFrom.com
Menu (ESC)

C52400 Bronze vs. N07752 Nickel

C52400 bronze belongs to the copper alloys classification, while N07752 nickel belongs to the nickel alloys. There are 24 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is C52400 bronze and the bottom bar is N07752 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 41
73
Tensile Strength: Ultimate (UTS), MPa 450 to 880
1120

Thermal Properties

Latent Heat of Fusion, J/g 190
310
Maximum Temperature: Mechanical, °C 170
960
Melting Completion (Liquidus), °C 1000
1380
Melting Onset (Solidus), °C 840
1330
Specific Heat Capacity, J/kg-K 370
460
Thermal Conductivity, W/m-K 50
13
Thermal Expansion, µm/m-K 18
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 11
1.5

Otherwise Unclassified Properties

Base Metal Price, % relative 35
60
Density, g/cm3 8.8
8.4
Embodied Carbon, kg CO2/kg material 3.6
10
Embodied Energy, MJ/kg 58
150
Embodied Water, L/kg 390
260

Common Calculations

Stiffness to Weight: Axial, points 6.9
13
Stiffness to Weight: Bending, points 18
23
Strength to Weight: Axial, points 14 to 28
37
Strength to Weight: Bending, points 15 to 23
29
Thermal Diffusivity, mm2/s 15
3.2
Thermal Shock Resistance, points 17 to 32
34

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
0.4 to 1.0
Boron (B), % 0
0 to 0.0070
Carbon (C), % 0
0.020 to 0.060
Chromium (Cr), % 0
14.5 to 17
Cobalt (Co), % 0
0 to 0.050
Copper (Cu), % 87.8 to 91
0 to 0.5
Iron (Fe), % 0 to 0.1
5.0 to 9.0
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
0 to 1.0
Nickel (Ni), % 0
70 to 77.1
Niobium (Nb), % 0
0.7 to 1.2
Phosphorus (P), % 0.030 to 0.35
0 to 0.0080
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0
0 to 0.0030
Tin (Sn), % 9.0 to 11
0
Titanium (Ti), % 0
2.3 to 2.8
Vanadium (V), % 0
0 to 0.1
Zinc (Zn), % 0 to 0.2
0 to 0.050
Residuals, % 0 to 0.5
0