MakeItFrom.com
Menu (ESC)

C61300 Bronze vs. AWS E312

C61300 bronze belongs to the copper alloys classification, while AWS E312 belongs to the iron alloys. There are 20 material properties with values for both materials. Properties with values for just one material (10, in this case) are not shown.

For each property being compared, the top bar is C61300 bronze and the bottom bar is AWS E312.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 34 to 40
25
Poisson's Ratio 0.34
0.27
Shear Modulus, GPa 43
80
Tensile Strength: Ultimate (UTS), MPa 550 to 580
740

Thermal Properties

Latent Heat of Fusion, J/g 220
310
Melting Completion (Liquidus), °C 1050
1410
Melting Onset (Solidus), °C 1040
1360
Specific Heat Capacity, J/kg-K 420
480
Thermal Expansion, µm/m-K 18
15

Otherwise Unclassified Properties

Base Metal Price, % relative 29
20
Density, g/cm3 8.5
7.7
Embodied Carbon, kg CO2/kg material 3.0
3.6
Embodied Energy, MJ/kg 49
52
Embodied Water, L/kg 370
200

Common Calculations

Stiffness to Weight: Axial, points 7.5
15
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 18 to 19
27
Strength to Weight: Bending, points 18
24
Thermal Shock Resistance, points 19 to 20
18

Alloy Composition

Aluminum (Al), % 6.0 to 7.5
0
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0
28 to 32
Copper (Cu), % 88 to 91.8
0 to 0.75
Iron (Fe), % 2.0 to 3.0
52.3 to 63.5
Lead (Pb), % 0 to 0.010
0
Manganese (Mn), % 0 to 0.2
0.5 to 2.5
Molybdenum (Mo), % 0
0 to 0.75
Nickel (Ni), % 0 to 0.15
8.0 to 10.5
Phosphorus (P), % 0 to 0.015
0 to 0.040
Silicon (Si), % 0 to 0.1
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0.2 to 0.5
0
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.2
0