MakeItFrom.com
Menu (ESC)

C61300 Bronze vs. EN 1.4525 Stainless Steel

C61300 bronze belongs to the copper alloys classification, while EN 1.4525 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C61300 bronze and the bottom bar is EN 1.4525 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 34 to 40
5.6 to 13
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 43
76
Tensile Strength: Ultimate (UTS), MPa 550 to 580
1030 to 1250
Tensile Strength: Yield (Proof), MPa 230 to 310
840 to 1120

Thermal Properties

Latent Heat of Fusion, J/g 220
280
Maximum Temperature: Mechanical, °C 210
860
Melting Completion (Liquidus), °C 1050
1430
Melting Onset (Solidus), °C 1040
1390
Specific Heat Capacity, J/kg-K 420
480
Thermal Conductivity, W/m-K 55
18
Thermal Expansion, µm/m-K 18
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 12
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 13
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 29
13
Density, g/cm3 8.5
7.8
Embodied Carbon, kg CO2/kg material 3.0
2.8
Embodied Energy, MJ/kg 49
39
Embodied Water, L/kg 370
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150 to 190
68 to 130
Resilience: Unit (Modulus of Resilience), kJ/m3 230 to 410
1820 to 3230
Stiffness to Weight: Axial, points 7.5
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 18 to 19
36 to 45
Strength to Weight: Bending, points 18
29 to 33
Thermal Diffusivity, mm2/s 15
4.7
Thermal Shock Resistance, points 19 to 20
34 to 41

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 6.0 to 7.5
0
Carbon (C), % 0
0 to 0.070
Chromium (Cr), % 0
15 to 17
Copper (Cu), % 88 to 91.8
2.5 to 4.0
Iron (Fe), % 2.0 to 3.0
70.4 to 79
Lead (Pb), % 0 to 0.010
0
Manganese (Mn), % 0 to 0.2
0 to 1.0
Molybdenum (Mo), % 0
0 to 0.8
Nickel (Ni), % 0 to 0.15
3.5 to 5.5
Niobium (Nb), % 0
0 to 0.35
Nitrogen (N), % 0
0 to 0.050
Phosphorus (P), % 0 to 0.015
0 to 0.035
Silicon (Si), % 0 to 0.1
0 to 0.8
Sulfur (S), % 0
0 to 0.025
Tin (Sn), % 0.2 to 0.5
0
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.2
0

Comparable Variants