MakeItFrom.com
Menu (ESC)

C61300 Bronze vs. Grade 25 Titanium

C61300 bronze belongs to the copper alloys classification, while grade 25 titanium belongs to the titanium alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C61300 bronze and the bottom bar is grade 25 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 34 to 40
11
Poisson's Ratio 0.34
0.32
Shear Modulus, GPa 43
40
Shear Strength, MPa 370 to 390
600
Tensile Strength: Ultimate (UTS), MPa 550 to 580
1000
Tensile Strength: Yield (Proof), MPa 230 to 310
940

Thermal Properties

Latent Heat of Fusion, J/g 220
410
Maximum Temperature: Mechanical, °C 210
340
Melting Completion (Liquidus), °C 1050
1610
Melting Onset (Solidus), °C 1040
1560
Specific Heat Capacity, J/kg-K 420
560
Thermal Conductivity, W/m-K 55
7.1
Thermal Expansion, µm/m-K 18
9.6

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 12
1.0
Electrical Conductivity: Equal Weight (Specific), % IACS 13
2.0

Otherwise Unclassified Properties

Density, g/cm3 8.5
4.5
Embodied Carbon, kg CO2/kg material 3.0
43
Embodied Energy, MJ/kg 49
700
Embodied Water, L/kg 370
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150 to 190
110
Resilience: Unit (Modulus of Resilience), kJ/m3 230 to 410
4220
Stiffness to Weight: Axial, points 7.5
13
Stiffness to Weight: Bending, points 19
35
Strength to Weight: Axial, points 18 to 19
62
Strength to Weight: Bending, points 18
50
Thermal Diffusivity, mm2/s 15
2.8
Thermal Shock Resistance, points 19 to 20
71

Alloy Composition

Aluminum (Al), % 6.0 to 7.5
5.5 to 6.8
Carbon (C), % 0
0 to 0.080
Copper (Cu), % 88 to 91.8
0
Hydrogen (H), % 0
0 to 0.013
Iron (Fe), % 2.0 to 3.0
0 to 0.4
Lead (Pb), % 0 to 0.010
0
Manganese (Mn), % 0 to 0.2
0
Nickel (Ni), % 0 to 0.15
0.3 to 0.8
Nitrogen (N), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.2
Palladium (Pd), % 0
0.040 to 0.080
Phosphorus (P), % 0 to 0.015
0
Silicon (Si), % 0 to 0.1
0
Tin (Sn), % 0.2 to 0.5
0
Titanium (Ti), % 0
86.7 to 90.6
Vanadium (V), % 0
3.5 to 4.5
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0
0 to 0.4