MakeItFrom.com
Menu (ESC)

C61500 Bronze vs. EN 1.4034 Stainless Steel

C61500 bronze belongs to the copper alloys classification, while EN 1.4034 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C61500 bronze and the bottom bar is EN 1.4034 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 3.0 to 55
11 to 14
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 42
76
Shear Strength, MPa 350 to 550
420 to 540
Tensile Strength: Ultimate (UTS), MPa 480 to 970
690 to 900
Tensile Strength: Yield (Proof), MPa 150 to 720
390 to 730

Thermal Properties

Latent Heat of Fusion, J/g 220
270
Maximum Temperature: Mechanical, °C 220
770
Melting Completion (Liquidus), °C 1040
1440
Melting Onset (Solidus), °C 1030
1390
Specific Heat Capacity, J/kg-K 430
480
Thermal Conductivity, W/m-K 58
30
Thermal Expansion, µm/m-K 18
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 13
3.1
Electrical Conductivity: Equal Weight (Specific), % IACS 13
3.7

Otherwise Unclassified Properties

Base Metal Price, % relative 29
7.0
Density, g/cm3 8.4
7.7
Embodied Carbon, kg CO2/kg material 3.2
2.0
Embodied Energy, MJ/kg 52
27
Embodied Water, L/kg 380
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 27 to 200
81 to 94
Resilience: Unit (Modulus of Resilience), kJ/m3 100 to 2310
400 to 1370
Stiffness to Weight: Axial, points 7.5
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 16 to 32
25 to 32
Strength to Weight: Bending, points 16 to 26
22 to 27
Thermal Diffusivity, mm2/s 16
8.1
Thermal Shock Resistance, points 17 to 34
24 to 32

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 7.7 to 8.3
0
Carbon (C), % 0
0.43 to 0.5
Chromium (Cr), % 0
12.5 to 14.5
Copper (Cu), % 89 to 90.5
0
Iron (Fe), % 0
83 to 87.1
Lead (Pb), % 0 to 0.015
0
Manganese (Mn), % 0
0 to 1.0
Nickel (Ni), % 1.8 to 2.2
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Residuals, % 0 to 0.5
0