MakeItFrom.com
Menu (ESC)

C61500 Bronze vs. S32654 Stainless Steel

C61500 bronze belongs to the copper alloys classification, while S32654 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C61500 bronze and the bottom bar is S32654 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
210
Elongation at Break, % 3.0 to 55
45
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 42
82
Shear Strength, MPa 350 to 550
590
Tensile Strength: Ultimate (UTS), MPa 480 to 970
850
Tensile Strength: Yield (Proof), MPa 150 to 720
490

Thermal Properties

Latent Heat of Fusion, J/g 220
310
Maximum Temperature: Mechanical, °C 220
1100
Melting Completion (Liquidus), °C 1040
1450
Melting Onset (Solidus), °C 1030
1410
Specific Heat Capacity, J/kg-K 430
460
Thermal Conductivity, W/m-K 58
11
Thermal Expansion, µm/m-K 18
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 13
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 13
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 29
34
Density, g/cm3 8.4
8.0
Embodied Carbon, kg CO2/kg material 3.2
6.4
Embodied Energy, MJ/kg 52
87
Embodied Water, L/kg 380
220

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 27 to 200
330
Resilience: Unit (Modulus of Resilience), kJ/m3 100 to 2310
570
Stiffness to Weight: Axial, points 7.5
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 16 to 32
29
Strength to Weight: Bending, points 16 to 26
25
Thermal Diffusivity, mm2/s 16
2.9
Thermal Shock Resistance, points 17 to 34
19

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 7.7 to 8.3
0
Carbon (C), % 0
0 to 0.020
Chromium (Cr), % 0
24 to 25
Copper (Cu), % 89 to 90.5
0.3 to 0.6
Iron (Fe), % 0
38.3 to 45.3
Lead (Pb), % 0 to 0.015
0
Manganese (Mn), % 0
2.0 to 4.0
Molybdenum (Mo), % 0
7.0 to 8.0
Nickel (Ni), % 1.8 to 2.2
21 to 23
Nitrogen (N), % 0
0.45 to 0.55
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0
0 to 0.0050
Residuals, % 0 to 0.5
0