MakeItFrom.com
Menu (ESC)

C61900 Bronze vs. AISI 446 Stainless Steel

C61900 bronze belongs to the copper alloys classification, while AISI 446 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C61900 bronze and the bottom bar is AISI 446 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 21 to 32
23
Poisson's Ratio 0.34
0.27
Shear Modulus, GPa 43
79
Shear Strength, MPa 370 to 410
360
Tensile Strength: Ultimate (UTS), MPa 570 to 650
570
Tensile Strength: Yield (Proof), MPa 230 to 310
300

Thermal Properties

Latent Heat of Fusion, J/g 230
290
Maximum Temperature: Mechanical, °C 220
1180
Melting Completion (Liquidus), °C 1050
1510
Melting Onset (Solidus), °C 1040
1430
Specific Heat Capacity, J/kg-K 440
490
Thermal Conductivity, W/m-K 79
17
Thermal Expansion, µm/m-K 18
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
1.9
Electrical Conductivity: Equal Weight (Specific), % IACS 11
2.3

Otherwise Unclassified Properties

Base Metal Price, % relative 28
12
Density, g/cm3 8.3
7.7
Embodied Carbon, kg CO2/kg material 3.1
2.4
Embodied Energy, MJ/kg 51
35
Embodied Water, L/kg 380
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110 to 150
110
Resilience: Unit (Modulus of Resilience), kJ/m3 230 to 430
230
Stiffness to Weight: Axial, points 7.6
15
Stiffness to Weight: Bending, points 19
26
Strength to Weight: Axial, points 19 to 22
21
Strength to Weight: Bending, points 18 to 20
20
Thermal Diffusivity, mm2/s 22
4.6
Thermal Shock Resistance, points 20 to 23
19

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 8.5 to 10
0
Carbon (C), % 0
0 to 0.2
Chromium (Cr), % 0
23 to 27
Copper (Cu), % 83.6 to 88.5
0
Iron (Fe), % 3.0 to 4.5
69.2 to 77
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 0
0 to 1.5
Nickel (Ni), % 0
0 to 0.75
Nitrogen (N), % 0
0 to 0.25
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.6
0
Zinc (Zn), % 0 to 0.8
0
Residuals, % 0 to 0.5
0