MakeItFrom.com
Menu (ESC)

C61900 Bronze vs. C95500 Bronze

Both C61900 bronze and C95500 bronze are copper alloys. They have a moderately high 94% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C61900 bronze and the bottom bar is C95500 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
120
Elongation at Break, % 21 to 32
8.4 to 10
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 43
44
Tensile Strength: Ultimate (UTS), MPa 570 to 650
700 to 850
Tensile Strength: Yield (Proof), MPa 230 to 310
320 to 470

Thermal Properties

Latent Heat of Fusion, J/g 230
230
Maximum Temperature: Mechanical, °C 220
230
Melting Completion (Liquidus), °C 1050
1050
Melting Onset (Solidus), °C 1040
1040
Specific Heat Capacity, J/kg-K 440
450
Thermal Conductivity, W/m-K 79
42
Thermal Expansion, µm/m-K 18
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
8.0
Electrical Conductivity: Equal Weight (Specific), % IACS 11
8.8

Otherwise Unclassified Properties

Base Metal Price, % relative 28
28
Density, g/cm3 8.3
8.2
Embodied Carbon, kg CO2/kg material 3.1
3.5
Embodied Energy, MJ/kg 51
57
Embodied Water, L/kg 380
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110 to 150
58 to 61
Resilience: Unit (Modulus of Resilience), kJ/m3 230 to 430
420 to 950
Stiffness to Weight: Axial, points 7.6
8.0
Stiffness to Weight: Bending, points 19
20
Strength to Weight: Axial, points 19 to 22
24 to 29
Strength to Weight: Bending, points 18 to 20
21 to 24
Thermal Diffusivity, mm2/s 22
11
Thermal Shock Resistance, points 20 to 23
24 to 29

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 8.5 to 10
10 to 11.5
Copper (Cu), % 83.6 to 88.5
78 to 84
Iron (Fe), % 3.0 to 4.5
3.0 to 5.0
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 0
0 to 3.5
Nickel (Ni), % 0
3.0 to 5.5
Tin (Sn), % 0 to 0.6
0
Zinc (Zn), % 0 to 0.8
0
Residuals, % 0 to 0.5
0 to 0.5