MakeItFrom.com
Menu (ESC)

C61900 Bronze vs. S44700 Stainless Steel

C61900 bronze belongs to the copper alloys classification, while S44700 stainless steel belongs to the iron alloys. There are 25 material properties with values for both materials. Properties with values for just one material (10, in this case) are not shown.

For each property being compared, the top bar is C61900 bronze and the bottom bar is S44700 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
210
Elongation at Break, % 21 to 32
23
Poisson's Ratio 0.34
0.27
Shear Modulus, GPa 43
82
Shear Strength, MPa 370 to 410
380
Tensile Strength: Ultimate (UTS), MPa 570 to 650
600
Tensile Strength: Yield (Proof), MPa 230 to 310
450

Thermal Properties

Latent Heat of Fusion, J/g 230
300
Maximum Temperature: Mechanical, °C 220
1100
Melting Completion (Liquidus), °C 1050
1460
Melting Onset (Solidus), °C 1040
1410
Specific Heat Capacity, J/kg-K 440
480
Thermal Expansion, µm/m-K 18
11

Otherwise Unclassified Properties

Base Metal Price, % relative 28
18
Density, g/cm3 8.3
7.8
Embodied Carbon, kg CO2/kg material 3.1
3.6
Embodied Energy, MJ/kg 51
49
Embodied Water, L/kg 380
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110 to 150
120
Resilience: Unit (Modulus of Resilience), kJ/m3 230 to 430
480
Stiffness to Weight: Axial, points 7.6
15
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 19 to 22
21
Strength to Weight: Bending, points 18 to 20
20
Thermal Shock Resistance, points 20 to 23
19

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 8.5 to 10
0
Carbon (C), % 0
0 to 0.010
Chromium (Cr), % 0
28 to 30
Copper (Cu), % 83.6 to 88.5
0 to 0.15
Iron (Fe), % 3.0 to 4.5
64.9 to 68.5
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 0
0 to 0.3
Molybdenum (Mo), % 0
3.5 to 4.2
Nickel (Ni), % 0
0 to 0.15
Nitrogen (N), % 0
0 to 0.020
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0
0 to 0.2
Sulfur (S), % 0
0 to 0.020
Tin (Sn), % 0 to 0.6
0
Zinc (Zn), % 0 to 0.8
0
Residuals, % 0 to 0.5
0