MakeItFrom.com
Menu (ESC)

C62300 Bronze vs. EN 1.4988 Stainless Steel

C62300 bronze belongs to the copper alloys classification, while EN 1.4988 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C62300 bronze and the bottom bar is EN 1.4988 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 18 to 32
34
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 43
77
Shear Strength, MPa 360 to 390
430
Tensile Strength: Ultimate (UTS), MPa 570 to 630
640
Tensile Strength: Yield (Proof), MPa 230 to 310
290

Thermal Properties

Latent Heat of Fusion, J/g 230
290
Maximum Temperature: Mechanical, °C 220
920
Melting Completion (Liquidus), °C 1050
1450
Melting Onset (Solidus), °C 1040
1400
Specific Heat Capacity, J/kg-K 440
470
Thermal Conductivity, W/m-K 54
15
Thermal Expansion, µm/m-K 18
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 12
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 13
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 28
23
Density, g/cm3 8.3
7.9
Embodied Carbon, kg CO2/kg material 3.1
6.0
Embodied Energy, MJ/kg 52
89
Embodied Water, L/kg 390
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 95 to 150
180
Resilience: Unit (Modulus of Resilience), kJ/m3 240 to 430
210
Stiffness to Weight: Axial, points 7.6
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 19 to 21
23
Strength to Weight: Bending, points 18 to 20
21
Thermal Diffusivity, mm2/s 15
4.0
Thermal Shock Resistance, points 20 to 22
14

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 8.5 to 10
0
Carbon (C), % 0
0.040 to 0.1
Chromium (Cr), % 0
15.5 to 17.5
Copper (Cu), % 83.2 to 89.5
0
Iron (Fe), % 2.0 to 4.0
62.1 to 69.5
Manganese (Mn), % 0 to 0.5
0 to 1.5
Molybdenum (Mo), % 0
1.1 to 1.5
Nickel (Ni), % 0 to 1.0
12.5 to 14.5
Niobium (Nb), % 0
0.4 to 1.2
Nitrogen (N), % 0
0.060 to 0.14
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0 to 0.25
0.3 to 0.6
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0 to 0.6
0
Vanadium (V), % 0
0.6 to 0.85
Residuals, % 0 to 0.5
0