MakeItFrom.com
Menu (ESC)

C62400 Bronze vs. ASTM A182 Grade F122

C62400 bronze belongs to the copper alloys classification, while ASTM A182 grade F122 belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C62400 bronze and the bottom bar is ASTM A182 grade F122.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 11 to 14
23
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 42
76
Shear Strength, MPa 420 to 440
450
Tensile Strength: Ultimate (UTS), MPa 690 to 730
710
Tensile Strength: Yield (Proof), MPa 270 to 350
450

Thermal Properties

Latent Heat of Fusion, J/g 230
270
Maximum Temperature: Mechanical, °C 220
600
Melting Completion (Liquidus), °C 1040
1490
Melting Onset (Solidus), °C 1030
1440
Specific Heat Capacity, J/kg-K 440
470
Thermal Conductivity, W/m-K 59
24
Thermal Expansion, µm/m-K 18
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 12
10
Electrical Conductivity: Equal Weight (Specific), % IACS 13
12

Otherwise Unclassified Properties

Base Metal Price, % relative 27
12
Density, g/cm3 8.2
8.0
Embodied Carbon, kg CO2/kg material 3.2
3.0
Embodied Energy, MJ/kg 53
44
Embodied Water, L/kg 400
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 68 to 77
140
Resilience: Unit (Modulus of Resilience), kJ/m3 320 to 550
520
Stiffness to Weight: Axial, points 7.6
14
Stiffness to Weight: Bending, points 20
24
Strength to Weight: Axial, points 23 to 25
25
Strength to Weight: Bending, points 21 to 22
22
Thermal Diffusivity, mm2/s 16
6.4
Thermal Shock Resistance, points 25 to 26
19

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 10 to 11.5
0 to 0.020
Boron (B), % 0
0 to 0.0050
Carbon (C), % 0
0.070 to 0.14
Chromium (Cr), % 0
10 to 11.5
Copper (Cu), % 82.8 to 88
0.3 to 1.7
Iron (Fe), % 2.0 to 4.5
81.3 to 87.7
Manganese (Mn), % 0 to 0.3
0 to 0.7
Molybdenum (Mo), % 0
0.25 to 0.6
Nickel (Ni), % 0
0 to 0.5
Niobium (Nb), % 0
0.040 to 0.1
Nitrogen (N), % 0
0.040 to 0.1
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0 to 0.25
0 to 0.5
Sulfur (S), % 0
0 to 0.010
Tin (Sn), % 0 to 0.2
0
Titanium (Ti), % 0
0 to 0.010
Tungsten (W), % 0
1.5 to 2.5
Vanadium (V), % 0
0.15 to 0.3
Zirconium (Zr), % 0
0 to 0.010
Residuals, % 0 to 0.5
0