MakeItFrom.com
Menu (ESC)

C62500 Bronze vs. AISI 416 Stainless Steel

C62500 bronze belongs to the copper alloys classification, while AISI 416 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C62500 bronze and the bottom bar is AISI 416 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 1.0
13 to 31
Fatigue Strength, MPa 460
230 to 340
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 42
76
Shear Strength, MPa 410
340 to 480
Tensile Strength: Ultimate (UTS), MPa 690
510 to 800
Tensile Strength: Yield (Proof), MPa 410
290 to 600

Thermal Properties

Latent Heat of Fusion, J/g 230
270
Maximum Temperature: Mechanical, °C 230
680
Melting Completion (Liquidus), °C 1050
1530
Melting Onset (Solidus), °C 1050
1480
Specific Heat Capacity, J/kg-K 460
480
Thermal Conductivity, W/m-K 47
30
Thermal Expansion, µm/m-K 18
9.9

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 10
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 11
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 26
7.0
Density, g/cm3 8.1
7.7
Embodied Carbon, kg CO2/kg material 3.3
1.9
Embodied Energy, MJ/kg 55
27
Embodied Water, L/kg 410
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.0
98 to 140
Resilience: Unit (Modulus of Resilience), kJ/m3 750
220 to 940
Stiffness to Weight: Axial, points 7.8
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 24
18 to 29
Strength to Weight: Bending, points 22
18 to 25
Thermal Diffusivity, mm2/s 13
8.1
Thermal Shock Resistance, points 24
19 to 30

Alloy Composition

Aluminum (Al), % 12.5 to 13.5
0
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0
12 to 14
Copper (Cu), % 78.5 to 84
0
Iron (Fe), % 3.5 to 5.5
83.2 to 87.9
Manganese (Mn), % 0 to 2.0
0 to 1.3
Phosphorus (P), % 0
0 to 0.060
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0.15 to 0.35
Residuals, % 0 to 0.5
0