MakeItFrom.com
Menu (ESC)

C63000 Bronze vs. AWS E90C-B9

C63000 bronze belongs to the copper alloys classification, while AWS E90C-B9 belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C63000 bronze and the bottom bar is AWS E90C-B9.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 7.9 to 15
18
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 44
75
Tensile Strength: Ultimate (UTS), MPa 660 to 790
710
Tensile Strength: Yield (Proof), MPa 330 to 390
460

Thermal Properties

Latent Heat of Fusion, J/g 230
270
Melting Completion (Liquidus), °C 1050
1460
Melting Onset (Solidus), °C 1040
1410
Specific Heat Capacity, J/kg-K 440
470
Thermal Conductivity, W/m-K 39
25
Thermal Expansion, µm/m-K 18
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.0
6.9
Electrical Conductivity: Equal Weight (Specific), % IACS 7.6
8.0

Otherwise Unclassified Properties

Base Metal Price, % relative 29
7.0
Density, g/cm3 8.2
7.8
Embodied Carbon, kg CO2/kg material 3.5
2.6
Embodied Energy, MJ/kg 57
37
Embodied Water, L/kg 390
91

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 47 to 82
110
Resilience: Unit (Modulus of Resilience), kJ/m3 470 to 640
550
Stiffness to Weight: Axial, points 7.9
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 22 to 26
25
Strength to Weight: Bending, points 20 to 23
23
Thermal Diffusivity, mm2/s 11
6.9
Thermal Shock Resistance, points 23 to 27
20

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 9.0 to 11
0 to 0.040
Carbon (C), % 0
0.080 to 0.13
Chromium (Cr), % 0
8.0 to 10.5
Copper (Cu), % 76.8 to 85
0 to 0.2
Iron (Fe), % 2.0 to 4.0
84.4 to 90.9
Manganese (Mn), % 0 to 1.5
0 to 1.2
Molybdenum (Mo), % 0
0.85 to 1.2
Nickel (Ni), % 4.0 to 5.5
0 to 0.8
Niobium (Nb), % 0
0.020 to 0.1
Nitrogen (N), % 0
0.030 to 0.070
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0 to 0.25
0 to 0.5
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0 to 0.2
0
Vanadium (V), % 0
0.15 to 0.3
Zinc (Zn), % 0 to 0.3
0
Residuals, % 0 to 0.5
0 to 0.5