MakeItFrom.com
Menu (ESC)

C63800 Bronze vs. ASTM A182 Grade F122

C63800 bronze belongs to the copper alloys classification, while ASTM A182 grade F122 belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is C63800 bronze and the bottom bar is ASTM A182 grade F122.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 7.9 to 41
23
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 43
76
Shear Strength, MPa 320 to 500
450
Tensile Strength: Ultimate (UTS), MPa 460 to 1010
710

Thermal Properties

Latent Heat of Fusion, J/g 240
270
Maximum Temperature: Mechanical, °C 200
600
Melting Completion (Liquidus), °C 1030
1490
Melting Onset (Solidus), °C 1000
1440
Specific Heat Capacity, J/kg-K 410
470
Thermal Conductivity, W/m-K 40
24
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 10
10
Electrical Conductivity: Equal Weight (Specific), % IACS 10
12

Otherwise Unclassified Properties

Base Metal Price, % relative 30
12
Density, g/cm3 8.6
8.0
Embodied Carbon, kg CO2/kg material 2.8
3.0
Embodied Energy, MJ/kg 45
44
Embodied Water, L/kg 330
100

Common Calculations

Stiffness to Weight: Axial, points 7.4
14
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 15 to 33
25
Strength to Weight: Bending, points 15 to 26
22
Thermal Diffusivity, mm2/s 11
6.4
Thermal Shock Resistance, points 17 to 36
19

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 2.5 to 3.1
0 to 0.020
Boron (B), % 0
0 to 0.0050
Carbon (C), % 0
0.070 to 0.14
Chromium (Cr), % 0
10 to 11.5
Cobalt (Co), % 0.25 to 0.55
0
Copper (Cu), % 92.4 to 95.8
0.3 to 1.7
Iron (Fe), % 0 to 0.2
81.3 to 87.7
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0 to 0.1
0 to 0.7
Molybdenum (Mo), % 0
0.25 to 0.6
Nickel (Ni), % 0 to 0.2
0 to 0.5
Niobium (Nb), % 0
0.040 to 0.1
Nitrogen (N), % 0
0.040 to 0.1
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 1.5 to 2.1
0 to 0.5
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0
0 to 0.010
Tungsten (W), % 0
1.5 to 2.5
Vanadium (V), % 0
0.15 to 0.3
Zinc (Zn), % 0 to 0.8
0
Zirconium (Zr), % 0
0 to 0.010
Residuals, % 0 to 0.5
0