MakeItFrom.com
Menu (ESC)

C64800 Bronze vs. EN 1.0314 Steel

C64800 bronze belongs to the copper alloys classification, while EN 1.0314 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C64800 bronze and the bottom bar is EN 1.0314 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 8.0
24 to 25
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 44
73
Shear Strength, MPa 380
200 to 250
Tensile Strength: Ultimate (UTS), MPa 640
320 to 400
Tensile Strength: Yield (Proof), MPa 630
190 to 310

Thermal Properties

Latent Heat of Fusion, J/g 220
250
Maximum Temperature: Mechanical, °C 200
400
Melting Completion (Liquidus), °C 1090
1470
Melting Onset (Solidus), °C 1030
1430
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 260
53
Thermal Expansion, µm/m-K 17
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 65
6.9
Electrical Conductivity: Equal Weight (Specific), % IACS 66
7.9

Otherwise Unclassified Properties

Base Metal Price, % relative 33
1.8
Density, g/cm3 8.9
7.9
Embodied Carbon, kg CO2/kg material 2.7
1.4
Embodied Energy, MJ/kg 43
18
Embodied Water, L/kg 310
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 51
68 to 87
Resilience: Unit (Modulus of Resilience), kJ/m3 1680
95 to 250
Stiffness to Weight: Axial, points 7.4
13
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 20
11 to 14
Strength to Weight: Bending, points 19
13 to 15
Thermal Diffusivity, mm2/s 75
14
Thermal Shock Resistance, points 23
10 to 13

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
0.020 to 0.060
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0 to 0.090
0
Cobalt (Co), % 1.0 to 3.0
0
Copper (Cu), % 92.4 to 98.8
0
Iron (Fe), % 0 to 1.0
99.365 to 99.78
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
0.2 to 0.4
Nickel (Ni), % 0 to 0.5
0
Phosphorus (P), % 0 to 0.5
0 to 0.020
Silicon (Si), % 0.2 to 1.0
0 to 0.1
Sulfur (S), % 0
0 to 0.025
Tin (Sn), % 0 to 0.5
0
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.5
0