MakeItFrom.com
Menu (ESC)

C65100 Bronze vs. EN 1.4021 Stainless Steel

C65100 bronze belongs to the copper alloys classification, while EN 1.4021 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C65100 bronze and the bottom bar is EN 1.4021 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 2.4 to 50
11 to 17
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 43
76
Shear Strength, MPa 200 to 350
390 to 530
Tensile Strength: Ultimate (UTS), MPa 280 to 560
630 to 880
Tensile Strength: Yield (Proof), MPa 95 to 440
390 to 670

Thermal Properties

Latent Heat of Fusion, J/g 230
270
Maximum Temperature: Mechanical, °C 200
760
Melting Completion (Liquidus), °C 1060
1440
Melting Onset (Solidus), °C 1030
1400
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 57
30
Thermal Expansion, µm/m-K 18
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 12
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 12
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 30
7.0
Density, g/cm3 8.8
7.7
Embodied Carbon, kg CO2/kg material 2.6
1.9
Embodied Energy, MJ/kg 41
27
Embodied Water, L/kg 300
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 110
88 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 39 to 820
400 to 1160
Stiffness to Weight: Axial, points 7.3
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 8.7 to 18
23 to 31
Strength to Weight: Bending, points 11 to 17
21 to 26
Thermal Diffusivity, mm2/s 16
8.1
Thermal Shock Resistance, points 9.5 to 19
22 to 31

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0.16 to 0.25
Chromium (Cr), % 0
12 to 14
Copper (Cu), % 94.5 to 99.2
0
Iron (Fe), % 0 to 0.8
83.2 to 87.8
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0 to 0.7
0 to 1.5
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0.8 to 2.0
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Zinc (Zn), % 0 to 1.5
0
Residuals, % 0 to 0.5
0