MakeItFrom.com
Menu (ESC)

C65400 Bronze vs. AISI 446 Stainless Steel

C65400 bronze belongs to the copper alloys classification, while AISI 446 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C65400 bronze and the bottom bar is AISI 446 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 2.6 to 47
23
Poisson's Ratio 0.34
0.27
Rockwell B Hardness 82 to 120
84
Shear Modulus, GPa 43
79
Shear Strength, MPa 350 to 530
360
Tensile Strength: Ultimate (UTS), MPa 500 to 1060
570
Tensile Strength: Yield (Proof), MPa 170 to 910
300

Thermal Properties

Latent Heat of Fusion, J/g 260
290
Maximum Temperature: Mechanical, °C 200
1180
Melting Completion (Liquidus), °C 1020
1510
Melting Onset (Solidus), °C 960
1430
Specific Heat Capacity, J/kg-K 400
490
Thermal Conductivity, W/m-K 36
17
Thermal Expansion, µm/m-K 17
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.0
1.9
Electrical Conductivity: Equal Weight (Specific), % IACS 7.3
2.3

Otherwise Unclassified Properties

Base Metal Price, % relative 31
12
Density, g/cm3 8.7
7.7
Embodied Carbon, kg CO2/kg material 2.8
2.4
Embodied Energy, MJ/kg 45
35
Embodied Water, L/kg 310
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 10 to 480
110
Resilience: Unit (Modulus of Resilience), kJ/m3 130 to 3640
230
Stiffness to Weight: Axial, points 7.3
15
Stiffness to Weight: Bending, points 19
26
Strength to Weight: Axial, points 16 to 34
21
Strength to Weight: Bending, points 16 to 27
20
Thermal Diffusivity, mm2/s 10
4.6
Thermal Shock Resistance, points 18 to 39
19

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0 to 0.2
Chromium (Cr), % 0.010 to 0.12
23 to 27
Copper (Cu), % 93.8 to 96.1
0
Iron (Fe), % 0
69.2 to 77
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
0 to 1.5
Nickel (Ni), % 0
0 to 0.75
Nitrogen (N), % 0
0 to 0.25
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 2.7 to 3.4
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 1.2 to 1.9
0
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.2
0