MakeItFrom.com
Menu (ESC)

C65400 Bronze vs. EN 1.4408 Stainless Steel

C65400 bronze belongs to the copper alloys classification, while EN 1.4408 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is C65400 bronze and the bottom bar is EN 1.4408 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 2.6 to 47
34
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 43
78
Tensile Strength: Ultimate (UTS), MPa 500 to 1060
510
Tensile Strength: Yield (Proof), MPa 170 to 910
210

Thermal Properties

Latent Heat of Fusion, J/g 260
300
Maximum Temperature: Mechanical, °C 200
990
Melting Completion (Liquidus), °C 1020
1440
Melting Onset (Solidus), °C 960
1390
Specific Heat Capacity, J/kg-K 400
480
Thermal Conductivity, W/m-K 36
15
Thermal Expansion, µm/m-K 17
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.0
2.1
Electrical Conductivity: Equal Weight (Specific), % IACS 7.3
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 31
18
Density, g/cm3 8.7
7.8
Embodied Carbon, kg CO2/kg material 2.8
3.7
Embodied Energy, MJ/kg 45
52
Embodied Water, L/kg 310
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 10 to 480
140
Resilience: Unit (Modulus of Resilience), kJ/m3 130 to 3640
110
Stiffness to Weight: Axial, points 7.3
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 16 to 34
18
Strength to Weight: Bending, points 16 to 27
18
Thermal Diffusivity, mm2/s 10
3.9
Thermal Shock Resistance, points 18 to 39
11

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0 to 0.070
Chromium (Cr), % 0.010 to 0.12
18 to 20
Copper (Cu), % 93.8 to 96.1
0
Iron (Fe), % 0
62.4 to 71
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
0 to 1.5
Molybdenum (Mo), % 0
2.0 to 2.5
Nickel (Ni), % 0
9.0 to 12
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 2.7 to 3.4
0 to 1.5
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 1.2 to 1.9
0
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.2
0